#include <math.h>
#include <stdio.h>
#include <string>
#include <vector>
#include "mnist_common.h"
using std::vector;
float accuracy(
const array &predicted,
const array &target) {
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.
elements();
}
array deriv(
const array &out) {
return out * (1 - out); }
double error(
const array &out,
const array &pred) {
array dif = (out - pred);
return sqrt((
double)(sum<float>(dif * dif)));
}
}
class rbm {
private:
array vtoh(
const array &v) {
return binary(prop_up(v)); }
array htov(
const array &h) {
return binary(prop_down(h)); }
public:
rbm() {}
rbm(int v_size, int h_size)
: weights(
randu(h_size, v_size) / 100 - 0.05)
}
}
vt = v;
for (int i = 0; i < k; i++) {
ht = vtoh(vt);
vt = htov(ht);
}
}
ht = h;
for (int i = 0; i < k; i++) {
vt = htov(ht);
ht = vtoh(vt);
}
}
void train(
const array &in,
double lr = 0.1,
int num_epochs = 15,
int batch_size = 100, int k = 1, bool verbose = false) {
const int num_samples = in.
dims(0);
const int num_batches = num_samples / batch_size;
for (int i = 0; i < num_epochs; i++) {
double err = 0;
for (int j = 0; j < num_batches - 1; j++) {
int st = j * batch_size;
int en = std::min(num_samples - 1, st + batch_size - 1);
int num = en - st + 1;
array h_pos = vtoh(v_pos);
gibbs_hvh(v_neg, h_neg, h_pos, k);
array delta_w = lr * (c_pos - c_neg) / num;
array delta_vb = lr *
sum(v_pos - v_neg) / num;
array delta_hb = lr *
sum(h_pos - h_neg) / num;
weights += delta_w;
v_bias += delta_vb;
h_bias += delta_hb;
if (verbose) { err += error(v_pos, v_neg); }
}
if (verbose) {
printf("Epoch %d: Reconstruction error: %0.4f\n", i + 1,
err / num_batches);
}
}
if (verbose) printf("\n");
}
};
int rbm_demo(bool , int perc) {
printf("** ArrayFire RBM Demo **\n\n");
array train_images, test_images;
array train_target, test_target;
int num_classes, num_train, num_test;
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test, train_images,
test_images, train_target, test_target, frac);
int feature_size = train_images.
elements() / num_train;
array train_feats =
moddims(train_images, feature_size, num_train).
T();
array test_feats =
moddims(test_images, feature_size, num_test).
T();
train_target = train_target.
T();
test_target = test_target.
T();
rbm network(train_feats.
dims(1), 2000);
network.train(train_feats,
0.1,
15,
100,
1,
true);
for (int ii = 0; ii < 5; ii++) {
array in = test_feats(ii, span);
network.gibbs_vhv(res, tmp, in);
in =
moddims(in, dims[0], dims[1]);
res =
moddims(res, dims[0], dims[1]);
printf("Reconstructed Error for image %2d: %.4f\n", ii,
sum<float>(
abs(in - res)) / feature_size);
}
return 0;
}
int main(int argc, char **argv) {
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
return rbm_demo(console, perc);
return 0;
}
A multi dimensional data container.
dim4 dims() const
Get dimensions of the array.
const array as(dtype type) const
Casts the array into another data type.
array T() const
Get the transposed the array.
dim_t elements() const
Get the total number of elements across all dimensions of the array.
Generic object that represents size and shape.
An ArrayFire exception class.
virtual const char * what() const
Returns an error message for the exception in a string format.
seq is used to create sequences for indexing af::array
@ f32
32-bit floating point values
AFAPI array abs(const array &in)
C++ Interface to calculate the absolute value.
AFAPI array round(const array &in)
C++ Interface to round numbers.
AFAPI array sigmoid(const array &in)
C++ Interface to evaluate the logistical sigmoid function.
AFAPI array sqrt(const array &in)
C++ Interface to evaluate the square root.
AFAPI array matmulTN(const array &lhs, const array &rhs)
C++ Interface to multiply two matrices.
AFAPI array matmul(const array &lhs, const array &rhs, const matProp optLhs=AF_MAT_NONE, const matProp optRhs=AF_MAT_NONE)
C++ Interface to multiply two matrices.
AFAPI array matmulNT(const array &lhs, const array &rhs)
C++ Interface to multiply two matrices.
array constant(T val, const dim4 &dims, const dtype ty=(af_dtype) dtype_traits< T >::ctype)
C++ Interface to generate an array with elements set to a specified value.
AFAPI void setDevice(const int device)
Sets the current device.
AFAPI array moddims(const array &in, const dim4 &dims)
C++ Interface to modify the dimensions of an input array to a specified shape.
AFAPI array tile(const array &in, const unsigned x, const unsigned y=1, const unsigned z=1, const unsigned w=1)
C++ Interface to generate a tiled array.
AFAPI array randu(const dim4 &dims, const dtype ty, randomEngine &r)
C++ Interface to create an array of random numbers uniformly distributed.
AFAPI array sum(const array &in, const int dim=-1)
C++ Interface to sum array elements over a given dimension.