#include <math.h>
#include <stdio.h>
#include <string>
#include <vector>
#include "mnist_common.h"
using std::vector;
std::string toStr(
const dtype dt) {
switch (dt) {
default: return "N/A";
}
}
float accuracy(
const array &predicted,
const array &target) {
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.
elements();
}
array deriv(
const array &out) {
return out * (1 - out); }
double error(
const array &out,
const array &pred) {
array dif = (out - pred);
return sqrt((
double)(sum<float>(dif * dif)));
}
class ann {
private:
int num_layers;
vector<array> weights;
vector<array> forward_propagate(
const array &input);
void back_propagate(
const vector<array> signal,
const array &pred,
const double &alpha);
public:
ann(vector<int> layers,
double range,
dtype dt =
f32);
double train(
const array &input,
const array &target,
double alpha = 1.0,
int max_epochs = 300, int batch_size = 100,
double maxerr = 1.0, bool verbose = false);
};
}
vector<array> ann::forward_propagate(
const array &input) {
vector<array> signal(num_layers);
signal[0] = input;
for (int i = 0; i < num_layers - 1; i++) {
array in = add_bias(signal[i]);
}
return signal;
}
void ann::back_propagate(
const vector<array> signal,
const array &target,
const double &alpha) {
array out = signal[num_layers - 1];
array err = (out - target);
for (int i = num_layers - 2; i >= 0; i--) {
array in = add_bias(signal[i]);
array delta = (deriv(out) * err).T();
out = signal[i];
err = err(span,
seq(1, out.
dims(1)));
}
}
ann::ann(vector<int> layers,
double range,
dtype dt)
: num_layers(layers.size()), weights(layers.size() - 1), datatype(dt) {
std::cout
<< "Initializing weights using a random uniformly distribution between "
<< -
range / 2 <<
" and " <<
range / 2 <<
" at precision "
<< toStr(datatype) << std::endl;
for (int i = 0; i < num_layers - 1; i++) {
if (datatype !=
f32) weights[i] = weights[i].
as(datatype);
}
}
vector<array> signal = forward_propagate(input);
array out = signal[num_layers - 1];
return out;
}
double ann::train(
const array &input,
const array &target,
double alpha,
int max_epochs, int batch_size, double maxerr, bool verbose) {
const int num_samples = input.
dims(0);
const int num_batches = num_samples / batch_size;
double err = 0;
for (int i = 0; i < max_epochs; i++) {
for (int j = 0; j < num_batches - 1; j++) {
int st = j * batch_size;
int en = st + batch_size - 1;
vector<array> signals = forward_propagate(x);
array out = signals[num_layers - 1];
back_propagate(signals, y, alpha);
}
int st = (num_batches - 1) * batch_size;
int en = num_samples - 1;
array out = predict(input(
seq(st, en), span));
err = error(out, target(
seq(st, en), span));
if (err < maxerr) {
printf("Converged on Epoch: %4d\n", i + 1);
return err;
}
if (verbose) {
if ((i + 1) % 10 == 0)
printf("Epoch: %4d, Error: %0.4f\n", i + 1, err);
}
}
return err;
}
int ann_demo(
bool console,
int perc,
const dtype dt) {
printf("** ArrayFire ANN Demo **\n\n");
array train_images, test_images;
array train_target, test_target;
int num_classes, num_train, num_test;
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test, train_images,
test_images, train_target, test_target, frac);
train_images = train_images.
as(dt);
test_images = test_images.
as(dt);
train_target = train_target.
as(dt);
}
int feature_size = train_images.
elements() / num_train;
array train_feats =
moddims(train_images, feature_size, num_train).
T();
array test_feats =
moddims(test_images, feature_size, num_test).
T();
train_target = train_target.
T();
test_target = test_target.
T();
vector<int> layers;
layers.push_back(train_feats.
dims(1));
layers.push_back(100);
layers.push_back(50);
layers.push_back(num_classes);
ann network(layers, 0.05, dt);
timer::start();
network.train(train_feats, train_target,
2.0,
250,
100,
0.5,
true);
double train_time = timer::stop();
array train_output = network.predict(train_feats);
array test_output = network.predict(test_feats);
timer::start();
for (int i = 0; i < 100; i++) { network.predict(test_feats); }
double test_time = timer::stop() / 100;
printf("\nTraining set:\n");
printf("Accuracy on training data: %2.2f\n",
accuracy(train_output, train_target));
printf("\nTest set:\n");
printf("Accuracy on testing data: %2.2f\n",
accuracy(test_output, test_target));
printf("\nTraining time: %4.4lf s\n", train_time);
printf("Prediction time: %4.4lf s\n\n", test_time);
if (!console) {
test_output = test_output.
T();
display_results<true>(test_images, test_output, test_target.
T(), 20);
}
return 0;
}
int main(int argc, char **argv) {
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
if (perc < 0 || perc > 100) {
std::cerr << "Bad perc arg: " << perc << std::endl;
return EXIT_FAILURE;
}
std::string dts = argc > 4 ? argv[4] : "f32";
if (dts == "f16")
else if (dts != "f32") {
std::cerr << "Unsupported datatype " << dts << ". Supported: f32 or f16"
<< std::endl;
return EXIT_FAILURE;
}
std::cerr << "Half not available for device " << device << std::endl;
return EXIT_FAILURE;
}
try {
return ann_demo(console, perc, dt);
return 0;
}
A multi dimensional data container.
dim4 dims() const
Get dimensions of the array.
const array as(dtype type) const
Casts the array into another data type.
array T() const
Get the transposed the array.
dim_t elements() const
Get the total number of elements across all dimensions of the array.
An ArrayFire exception class.
virtual const char * what() const
Returns an error message for the exception in a string format.
seq is used to create sequences for indexing af::array
@ f32
32-bit floating point values
@ f16
16-bit floating point value
AFAPI array sigmoid(const array &in)
C++ Interface to evaluate the logistical sigmoid function.
AFAPI array sqrt(const array &in)
C++ Interface to evaluate the square root.
AFAPI array matmulTT(const array &lhs, const array &rhs)
C++ Interface to multiply two matrices.
AFAPI array matmul(const array &lhs, const array &rhs, const matProp optLhs=AF_MAT_NONE, const matProp optRhs=AF_MAT_NONE)
C++ Interface to multiply two matrices.
AFAPI void grad(array &dx, array &dy, const array &in)
C++ Interface for calculating the gradients.
array constant(T val, const dim4 &dims, const dtype ty=(af_dtype) dtype_traits< T >::ctype)
C++ Interface to generate an array with elements set to a specified value.
AFAPI array range(const dim4 &dims, const int seq_dim=-1, const dtype ty=f32)
C++ Interface to generate an array with [0, n-1] values along the seq_dim dimension and tiled across ...
AFAPI bool isHalfAvailable(const int device)
Queries the current device for half precision floating point support.
AFAPI void setDevice(const int device)
Sets the current device.
AFAPI void sync(const int device=-1)
Blocks until the device is finished processing.
AFAPI array join(const int dim, const array &first, const array &second)
C++ Interface to join 2 arrays along a dimension.
AFAPI array moddims(const array &in, const dim4 &dims)
C++ Interface to modify the dimensions of an input array to a specified shape.
AFAPI array randu(const dim4 &dims, const dtype ty, randomEngine &r)
C++ Interface to create an array of random numbers uniformly distributed.