#include <math.h>
#include <stdio.h>
#include <string>
#include <vector>
#include "mnist_common.h"
using std::vector;
float accuracy(
const array &predicted,
const array &target) {
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.
elements();
}
array deriv(
const array &out) {
return out * (1 - out); }
double error(
const array &out,
const array &pred) {
array dif = (out - pred);
return sqrt((
double)(sum<float>(dif * dif)));
}
}
class rbm {
private:
public:
rbm(int v_size, int h_size)
: weights(
randu(h_size, v_size) / 100.f)
}
void train(
const array &in,
double lr,
int num_epochs,
int batch_size,
bool verbose) {
const int num_samples = in.
dims(0);
const int num_batches = num_samples / batch_size;
for (int i = 0; i < num_epochs; i++) {
double err = 0;
for (int j = 0; j < num_batches - 1; j++) {
int st = j * batch_size;
int en = std::min(num_samples - 1, st + batch_size - 1);
int num = en - st + 1;
array h_pos = sigmoid_binary(
tile(h_bias, num) +
sigmoid_binary(
tile(v_bias, num) +
matmul(h_pos, weights));
array h_neg = sigmoid_binary(
tile(h_bias, num) +
array delta_w = lr * (c_pos - c_neg) / num;
array delta_vb = lr *
sum(v_pos - v_neg) / num;
array delta_hb = lr *
sum(h_pos - h_neg) / num;
weights += delta_w;
v_bias += delta_vb;
h_bias += delta_hb;
if (verbose) { err += error(v_pos, v_neg); }
}
if (verbose) {
printf("Epoch %d: Reconstruction error: %0.4f\n", i + 1,
err / num_batches);
}
}
}
}
};
class dbn {
private:
const int in_size;
const int out_size;
const int num_hidden;
const int num_total;
std::vector<array> weights;
std::vector<int> hidden;
}
vector<array> forward_propagate(
const array &input) {
vector<array> signal(num_total);
signal[0] = input;
for (int i = 0; i < num_total - 1; i++) {
array in = add_bias(signal[i]);
}
return signal;
}
void back_propagate(
const vector<array> signal,
const array &target,
const double &alpha) {
array out = signal[num_total - 1];
array err = (out - target);
for (int i = num_total - 2; i >= 0; i--) {
array in = add_bias(signal[i]);
array delta = (deriv(out) * err).T();
out = signal[i];
err = err(span,
seq(1, out.
dims(1)));
}
}
public:
dbn(const int in_sz, const int out_sz, const std::vector<int> hidden_layers)
: in_size(in_sz)
, out_size(out_sz)
, num_hidden(hidden_layers.size())
, num_total(hidden_layers.size() + 2)
, weights(hidden_layers.size() + 1)
, hidden(hidden_layers) {}
void train(
const array &input,
const array &target,
double lr_rbm = 1.0,
double lr_nn = 1.0, const int epochs_rbm = 15,
const int epochs_nn = 300, const int batch_size = 100,
double maxerr = 1.0, bool verbose = false) {
for (int i = 0; i < num_hidden; i++) {
if (verbose) { printf("Training Hidden Layer %d\n", i); }
int visible = (i == 0) ? in_size : hidden[i - 1];
rbm r(visible, hidden[i]);
r.train(X, lr_rbm, epochs_rbm, batch_size, verbose);
X = r.prop_up(X);
weights[i] = r.get_weights();
if (verbose) { printf("\n"); }
}
weights[num_hidden] =
0.05 *
randu(hidden[num_hidden - 1] + 1, out_size) - 0.0025;
const int num_samples = input.
dims(0);
const int num_batches = num_samples / batch_size;
for (int i = 0; i < epochs_nn; i++) {
for (int j = 0; j < num_batches; j++) {
int st = j * batch_size;
int en = std::min(num_samples - 1, st + batch_size - 1);
vector<array> signals = forward_propagate(x);
array out = signals[num_total - 1];
back_propagate(signals, y, lr_nn);
}
int st = (num_batches - 1) * batch_size;
int en = num_samples - 1;
array out = predict(input(
seq(st, en), span));
double err = error(out, target(
seq(st, en), span));
if (err < maxerr) {
printf("Converged on Epoch: %4d\n", i + 1);
return;
}
if (verbose) {
if ((i + 1) % 10 == 0)
printf("Epoch: %4d, Error: %0.4f\n", i + 1, err);
}
}
}
vector<array> signal = forward_propagate(input);
array out = signal[num_total - 1];
return out;
}
};
int dbn_demo(bool console, int perc) {
printf("** ArrayFire DBN Demo **\n\n");
array train_images, test_images;
array train_target, test_target;
int num_classes, num_train, num_test;
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test, train_images,
test_images, train_target, test_target, frac);
int feature_size = train_images.
elements() / num_train;
array train_feats =
moddims(train_images, feature_size, num_train).
T();
array test_feats =
moddims(test_images, feature_size, num_test).
T();
train_target = train_target.
T();
test_target = test_target.
T();
vector<int> layers;
layers.push_back(100);
layers.push_back(50);
dbn network(train_feats.
dims(1), num_classes, layers);
timer::start();
network.train(train_feats, train_target,
0.2,
4.0,
15,
250,
100,
0.5,
true);
double train_time = timer::stop();
array train_output = network.predict(train_feats);
array test_output = network.predict(test_feats);
timer::start();
for (int i = 0; i < 100; i++) { network.predict(test_feats); }
double test_time = timer::stop() / 100;
printf("\nTraining set:\n");
printf("Accuracy on training data: %2.2f\n",
accuracy(train_output, train_target));
printf("\nTest set:\n");
printf("Accuracy on testing data: %2.2f\n",
accuracy(test_output, test_target));
printf("\nTraining time: %4.4lf s\n", train_time);
printf("Prediction time: %4.4lf s\n\n", test_time);
if (!console) {
test_output = test_output.
T();
display_results<true>(test_images, test_output, test_target.
T(), 20);
}
return 0;
}
int main(int argc, char **argv) {
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
return dbn_demo(console, perc);
return 0;
}
A multi dimensional data container.
dim4 dims() const
Get dimensions of the array.
const array as(dtype type) const
Casts the array into another data type.
array T() const
Get the transposed the array.
dim_t elements() const
Get the total number of elements across all dimensions of the array.
An ArrayFire exception class.
virtual const char * what() const
Returns an error message for the exception in a string format.
seq is used to create sequences for indexing af::array
@ f32
32-bit floating point values
AFAPI array sigmoid(const array &in)
C++ Interface to evaluate the logistical sigmoid function.
AFAPI array sqrt(const array &in)
C++ Interface to evaluate the square root.
AFAPI array matmulTT(const array &lhs, const array &rhs)
C++ Interface to multiply two matrices.
AFAPI array matmulTN(const array &lhs, const array &rhs)
C++ Interface to multiply two matrices.
AFAPI array matmul(const array &lhs, const array &rhs, const matProp optLhs=AF_MAT_NONE, const matProp optRhs=AF_MAT_NONE)
C++ Interface to multiply two matrices.
AFAPI array matmulNT(const array &lhs, const array &rhs)
C++ Interface to multiply two matrices.
AFAPI array transpose(const array &in, const bool conjugate=false)
C++ Interface to transpose a matrix.
AFAPI void grad(array &dx, array &dy, const array &in)
C++ Interface for calculating the gradients.
array constant(T val, const dim4 &dims, const dtype ty=(af_dtype) dtype_traits< T >::ctype)
C++ Interface to generate an array with elements set to a specified value.
AFAPI void setDevice(const int device)
Sets the current device.
AFAPI void sync(const int device=-1)
Blocks until the device is finished processing.
AFAPI array join(const int dim, const array &first, const array &second)
C++ Interface to join 2 arrays along a dimension.
AFAPI array moddims(const array &in, const dim4 &dims)
C++ Interface to modify the dimensions of an input array to a specified shape.
AFAPI array tile(const array &in, const unsigned x, const unsigned y=1, const unsigned z=1, const unsigned w=1)
C++ Interface to generate a tiled array.
AFAPI array randu(const dim4 &dims, const dtype ty, randomEngine &r)
C++ Interface to create an array of random numbers uniformly distributed.
AFAPI array sum(const array &in, const int dim=-1)
C++ Interface to sum array elements over a given dimension.