arrayfire.algorithm module¶
Vector algorithms (sum, min, sort, etc).
-
arrayfire.algorithm.
accum
(a, dim=0)[source]¶ Cumulative sum of an array along a specified dimension
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: 0
Dimension along which the cumulative sum is required.
- Returns
- out: af.Array
array of same size as a containing the cumulative sum along dim.
-
arrayfire.algorithm.
allTrueByKey
(keys, vals, dim=- 1)[source]¶ Calculate if all elements are true along a specified dimension according to a key.
- Parameters
- keysaf.Array
One dimensional arrayfire array with reduction keys.
- valsaf.Array
Multi dimensional arrayfire array that will be reduced.
- dim: optional: int. default: -1
Dimension along which the all true check will occur.
- Returns
- keys: af.Array or scalar number
The reduced keys of all true check in vals along dimension dim.
- values: af.Array or scalar number
Booleans denoting if all elements are true in vals along dimension dim according to keys
-
arrayfire.algorithm.
all_true
(a, dim=None)[source]¶ Check if all the elements along a specified dimension are true.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the product is required.
- Returns
- out: af.Array or scalar number
Af.array containing True if all elements in a along the dimension are True. If dim is None, output is True if a does not have any zeros, else False.
-
arrayfire.algorithm.
anyTrueByKey
(keys, vals, dim=- 1)[source]¶ Calculate if any elements are true along a specified dimension according to a key.
- Parameters
- keysaf.Array
One dimensional arrayfire array with reduction keys.
- valsaf.Array
Multi dimensional arrayfire array that will be reduced.
- dim: optional: int. default: -1
Dimension along which the any true check will occur.
- Returns
- keys: af.Array or scalar number
The reduced keys of any true check in vals along dimension dim.
- values: af.Array or scalar number
Booleans denoting if any elements are true in vals along dimension dim according to keys.
-
arrayfire.algorithm.
any_true
(a, dim=None)[source]¶ Check if any the elements along a specified dimension are true.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the product is required.
- Returns
- out: af.Array or scalar number
Af.array containing True if any elements in a along the dimension are True. If dim is None, output is True if a does not have any zeros, else False.
-
arrayfire.algorithm.
count
(a, dim=None)[source]¶ Count the number of non zero elements in an array along a specified dimension.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the the non zero elements are to be counted.
- Returns
- out: af.Array or scalar number
The count of non zero elements in a along dim. If dim is None, the total number of non zero elements in a.
-
arrayfire.algorithm.
countByKey
(keys, vals, dim=- 1)[source]¶ Counts non-zero elements along a specified dimension according to a key.
- Parameters
- keysaf.Array
One dimensional arrayfire array with reduction keys.
- valsaf.Array
Multi dimensional arrayfire array that will be reduced.
- dim: optional: int. default: -1
Dimension along which to count elements.
- Returns
- keys: af.Array or scalar number
The reduced keys of count in vals along dimension dim.
- values: af.Array or scalar number
Count of non-zero elements in vals along dimension dim according to keys.
-
arrayfire.algorithm.
diff1
(a, dim=0)[source]¶ Find the first order differences along specified dimensions
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: 0
Dimension along which the differences are required.
- Returns
- out: af.Array
Array whose length along dim is 1 less than that of a.
-
arrayfire.algorithm.
diff2
(a, dim=0)[source]¶ Find the second order differences along specified dimensions
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: 0
Dimension along which the differences are required.
- Returns
- out: af.Array
Array whose length along dim is 2 less than that of a.
-
arrayfire.algorithm.
imax
(a, dim=None)[source]¶ Find the value and location of the maximum value along a specified dimension
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the maximum value is required.
- Returns
- (val, idx): tuple of af.Array or scalars
val contains the maximum value of a along dim. idx contains the location of where val occurs in a along dim. If dim is None, val and idx value and location of global maximum.
-
arrayfire.algorithm.
imin
(a, dim=None)[source]¶ Find the value and location of the minimum value along a specified dimension
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the minimum value is required.
- Returns
- (val, idx): tuple of af.Array or scalars
val contains the minimum value of a along dim. idx contains the location of where val occurs in a along dim. If dim is None, val and idx value and location of global minimum.
-
arrayfire.algorithm.
max
(a, dim=None)[source]¶ Find the maximum value of all the elements along a specified dimension.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the maximum value is required.
- Returns
- out: af.Array or scalar number
The maximum value of all elements in a along dimension dim. If dim is None, maximum value of the entire Array is returned.
-
arrayfire.algorithm.
maxByKey
(keys, vals, dim=- 1)[source]¶ Calculate the max of elements along a specified dimension according to a key.
- Parameters
- keysaf.Array
One dimensional arrayfire array with reduction keys.
- valsaf.Array
Multi dimensional arrayfire array that will be reduced.
- dim: optional: int. default: -1
Dimension along which the max will occur.
- Returns
- keys: af.Array or scalar number
The reduced keys of all elements in vals along dimension dim.
- values: af.Array or scalar number
The max of all elements in vals along dimension dim according to keys.
-
arrayfire.algorithm.
min
(a, dim=None)[source]¶ Find the minimum value of all the elements along a specified dimension.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the minimum value is required.
- Returns
- out: af.Array or scalar number
The minimum value of all elements in a along dimension dim. If dim is None, minimum value of the entire Array is returned.
-
arrayfire.algorithm.
minByKey
(keys, vals, dim=- 1)[source]¶ Calculate the min of elements along a specified dimension according to a key.
- Parameters
- keysaf.Array
One dimensional arrayfire array with reduction keys.
- valsaf.Array
Multi dimensional arrayfire array that will be reduced.
- dim: optional: int. default: -1
Dimension along which the min will occur.
- Returns
- keys: af.Array or scalar number
The reduced keys of all elements in vals along dimension dim.
- values: af.Array or scalar number
The min of all elements in vals along dimension dim according to keys
-
arrayfire.algorithm.
product
(a, dim=None, nan_val=None)[source]¶ Calculate the product of all the elements along a specified dimension.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the product is required.
- nan_val: optional: scalar. default: None
The value that replaces NaN in the array
- Returns
- out: af.Array or scalar number
The product of all elements in a along dimension dim. If dim is None, product of the entire Array is returned.
-
arrayfire.algorithm.
productByKey
(keys, vals, dim=- 1, nan_val=None)[source]¶ Calculate the product of elements along a specified dimension according to a key.
- Parameters
- keysaf.Array
One dimensional arrayfire array with reduction keys.
- valsaf.Array
Multi dimensional arrayfire array that will be reduced.
- dim: optional: int. default: -1
Dimension along which the product will occur.
- nan_val: optional: scalar. default: None
The value that replaces NaN in the array
- Returns
- keys: af.Array or scalar number
The reduced keys of all elements in vals along dimension dim.
- values: af.Array or scalar number
The product of all elements in vals along dimension dim according to keys
-
arrayfire.algorithm.
scan
(a, dim=0, op=<BINARYOP.ADD: 0>, inclusive_scan=True)[source]¶ Generalized scan of an array.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dimoptional: int. default: 0
Dimension along which the scan is performed.
- opoptional: af.BINARYOP. default: af.BINARYOP.ADD.
Binary option the scan algorithm uses. Can be one of: - af.BINARYOP.ADD - af.BINARYOP.MUL - af.BINARYOP.MIN - af.BINARYOP.MAX
- inclusive_scan: optional: bool. default: True
Specifies if the scan is inclusive
- Returns
- outaf.Array
will contain scan of input.
-
arrayfire.algorithm.
scan_by_key
(key, a, dim=0, op=<BINARYOP.ADD: 0>, inclusive_scan=True)[source]¶ Generalized scan by key of an array.
- Parameters
- keyaf.Array
key array.
- aaf.Array
Multi dimensional arrayfire array.
- dimoptional: int. default: 0
Dimension along which the scan is performed.
- opoptional: af.BINARYOP. default: af.BINARYOP.ADD.
Binary option the scan algorithm uses. Can be one of: - af.BINARYOP.ADD - af.BINARYOP.MUL - af.BINARYOP.MIN - af.BINARYOP.MAX
- inclusive_scan: optional: bool. default: True
Specifies if the scan is inclusive
- Returns
- outaf.Array
will contain scan of input.
-
arrayfire.algorithm.
set_intersect
(a, b, is_unique=False)[source]¶ Find the intersect of two arrays.
- Parameters
- aaf.Array
A 1D arrayfire array.
- baf.Array
A 1D arrayfire array.
- is_unique: optional: bool. default: False
Specifies if the both inputs contain unique elements.
- Returns
- out: af.Array
an array values after performing the intersect of a and b.
-
arrayfire.algorithm.
set_union
(a, b, is_unique=False)[source]¶ Find the union of two arrays.
- Parameters
- aaf.Array
A 1D arrayfire array.
- baf.Array
A 1D arrayfire array.
- is_unique: optional: bool. default: False
Specifies if the both inputs contain unique elements.
- Returns
- out: af.Array
an array values after performing the union of a and b.
-
arrayfire.algorithm.
set_unique
(a, is_sorted=False)[source]¶ Find the unique elements of an array.
- Parameters
- aaf.Array
A 1D arrayfire array.
- is_sorted: optional: bool. default: False
Specifies if the input is pre-sorted.
- Returns
- out: af.Array
an array containing the unique values from a
-
arrayfire.algorithm.
sort
(a, dim=0, is_ascending=True)[source]¶ Sort the array along a specified dimension
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: 0
Dimension along which sort is to be performed.
- is_ascending: optional: bool. default: True
Specifies the direction of the sort
- Returns
- out: af.Array
array containing the sorted values
-
arrayfire.algorithm.
sort_by_key
(ik, iv, dim=0, is_ascending=True)[source]¶ Sort an array based on specified keys
- Parameters
- ikaf.Array
An Array containing the keys
- ivaf.Array
An Array containing the values
- dim: optional: int. default: 0
Dimension along which sort is to be performed.
- is_ascending: optional: bool. default: True
Specifies the direction of the sort
- Returns
- (ok, ov): tuple of af.Array
ok contains the values from ik in sorted order ov contains the values from iv after sorting them based on ik
-
arrayfire.algorithm.
sort_index
(a, dim=0, is_ascending=True)[source]¶ Sort the array along a specified dimension and get the indices.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: 0
Dimension along which sort is to be performed.
- is_ascending: optional: bool. default: True
Specifies the direction of the sort
- Returns
- (val, idx): tuple of af.Array
val is an af.Array containing the sorted values. idx is an af.Array containing the original indices of val in a.
-
arrayfire.algorithm.
sum
(a, dim=None, nan_val=None)[source]¶ Calculate the sum of all the elements along a specified dimension.
- Parameters
- aaf.Array
Multi dimensional arrayfire array.
- dim: optional: int. default: None
Dimension along which the sum is required.
- nan_val: optional: scalar. default: None
The value that replaces NaN in the array
- Returns
- out: af.Array or scalar number
The sum of all elements in a along dimension dim. If dim is None, sum of the entire Array is returned.
-
arrayfire.algorithm.
sumByKey
(keys, vals, dim=- 1, nan_val=None)[source]¶ Calculate the sum of elements along a specified dimension according to a key.
- Parameters
- keysaf.Array
One dimensional arrayfire array with reduction keys.
- valsaf.Array
Multi dimensional arrayfire array that will be reduced.
- dim: optional: int. default: -1
Dimension along which the sum will occur.
- nan_val: optional: scalar. default: None
The value that replaces NaN in the array
- Returns
- keys: af.Array or scalar number
The reduced keys of all elements in vals along dimension dim.
- values: af.Array or scalar number
The sum of all elements in vals along dimension dim according to keys