#######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################
"""
Vector algorithms (sum, min, sort, etc).
"""
from .library import *
from .array import *
def _parallel_dim(a, dim, c_func):
out = Array()
safe_call(c_func(c_pointer(out.arr), a.arr, c_int_t(dim)))
return out
def _reduce_all(a, c_func):
real = c_double_t(0)
imag = c_double_t(0)
safe_call(c_func(c_pointer(real), c_pointer(imag), a.arr))
real = real.value
imag = imag.value
return real if imag == 0 else real + imag * 1j
def _nan_parallel_dim(a, dim, c_func, nan_val):
out = Array()
safe_call(c_func(c_pointer(out.arr), a.arr, c_int_t(dim), c_double_t(nan_val)))
return out
def _nan_reduce_all(a, c_func, nan_val):
real = c_double_t(0)
imag = c_double_t(0)
safe_call(c_func(c_pointer(real), c_pointer(imag), a.arr, c_double_t(nan_val)))
real = real.value
imag = imag.value
return real if imag == 0 else real + imag * 1j
def _FNSD(dim, dims):
if dim >= 0:
return int(dim)
fnsd = 0
for i, d in enumerate(dims):
if d > 1:
fnsd = i
break
return int(fnsd)
def _rbk_dim(keys, vals, dim, c_func):
keys_out = Array()
vals_out = Array()
rdim = _FNSD(dim, vals.dims())
safe_call(c_func(c_pointer(keys_out.arr), c_pointer(vals_out.arr), keys.arr, vals.arr, c_int_t(rdim)))
return keys_out, vals_out
def _nan_rbk_dim(a, dim, c_func, nan_val):
keys_out = Array()
vals_out = Array()
rdim = _FNSD(dim, vals.dims())
safe_call(c_func(c_pointer(keys_out.arr), c_pointer(vals_out.arr), keys.arr, vals.arr, c_int_t(rdim), c_double_t(nan_val)))
return keys_out, vals_out
[docs]def sum(a, dim=None, nan_val=None):
"""
Calculate the sum of all the elements along a specified dimension.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the sum is required.
nan_val: optional: scalar. default: None
The value that replaces NaN in the array
Returns
-------
out: af.Array or scalar number
The sum of all elements in `a` along dimension `dim`.
If `dim` is `None`, sum of the entire Array is returned.
"""
if (nan_val is not None):
if dim is not None:
return _nan_parallel_dim(a, dim, backend.get().af_sum_nan, nan_val)
else:
return _nan_reduce_all(a, backend.get().af_sum_nan_all, nan_val)
else:
if dim is not None:
return _parallel_dim(a, dim, backend.get().af_sum)
else:
return _reduce_all(a, backend.get().af_sum_all)
[docs]def sumByKey(keys, vals, dim=-1, nan_val=None):
"""
Calculate the sum of elements along a specified dimension according to a key.
Parameters
----------
keys : af.Array
One dimensional arrayfire array with reduction keys.
vals : af.Array
Multi dimensional arrayfire array that will be reduced.
dim: optional: int. default: -1
Dimension along which the sum will occur.
nan_val: optional: scalar. default: None
The value that replaces NaN in the array
Returns
-------
keys: af.Array or scalar number
The reduced keys of all elements in `vals` along dimension `dim`.
values: af.Array or scalar number
The sum of all elements in `vals` along dimension `dim` according to keys
"""
if (nan_val is not None):
return _nan_rbk_dim(keys, vals, dim, backend.get().af_sum_by_key_nan, nan_val)
else:
return _rbk_dim(keys, vals, dim, backend.get().af_sum_by_key)
[docs]def product(a, dim=None, nan_val=None):
"""
Calculate the product of all the elements along a specified dimension.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the product is required.
nan_val: optional: scalar. default: None
The value that replaces NaN in the array
Returns
-------
out: af.Array or scalar number
The product of all elements in `a` along dimension `dim`.
If `dim` is `None`, product of the entire Array is returned.
"""
if (nan_val is not None):
if dim is not None:
return _nan_parallel_dim(a, dim, backend.get().af_product_nan, nan_val)
else:
return _nan_reduce_all(a, backend.get().af_product_nan_all, nan_val)
else:
if dim is not None:
return _parallel_dim(a, dim, backend.get().af_product)
else:
return _reduce_all(a, backend.get().af_product_all)
[docs]def productByKey(keys, vals, dim=-1, nan_val=None):
"""
Calculate the product of elements along a specified dimension according to a key.
Parameters
----------
keys : af.Array
One dimensional arrayfire array with reduction keys.
vals : af.Array
Multi dimensional arrayfire array that will be reduced.
dim: optional: int. default: -1
Dimension along which the product will occur.
nan_val: optional: scalar. default: None
The value that replaces NaN in the array
Returns
-------
keys: af.Array or scalar number
The reduced keys of all elements in `vals` along dimension `dim`.
values: af.Array or scalar number
The product of all elements in `vals` along dimension `dim` according to keys
"""
if (nan_val is not None):
return _nan_rbk_dim(keys, vals, dim, backend.get().af_product_by_key_nan, nan_val)
else:
return _rbk_dim(keys, vals, dim, backend.get().af_product_by_key)
[docs]def min(a, dim=None):
"""
Find the minimum value of all the elements along a specified dimension.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the minimum value is required.
Returns
-------
out: af.Array or scalar number
The minimum value of all elements in `a` along dimension `dim`.
If `dim` is `None`, minimum value of the entire Array is returned.
"""
if dim is not None:
return _parallel_dim(a, dim, backend.get().af_min)
else:
return _reduce_all(a, backend.get().af_min_all)
[docs]def minByKey(keys, vals, dim=-1):
"""
Calculate the min of elements along a specified dimension according to a key.
Parameters
----------
keys : af.Array
One dimensional arrayfire array with reduction keys.
vals : af.Array
Multi dimensional arrayfire array that will be reduced.
dim: optional: int. default: -1
Dimension along which the min will occur.
Returns
-------
keys: af.Array or scalar number
The reduced keys of all elements in `vals` along dimension `dim`.
values: af.Array or scalar number
The min of all elements in `vals` along dimension `dim` according to keys
"""
return _rbk_dim(keys, vals, dim, backend.get().af_min_by_key)
[docs]def max(a, dim=None):
"""
Find the maximum value of all the elements along a specified dimension.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the maximum value is required.
Returns
-------
out: af.Array or scalar number
The maximum value of all elements in `a` along dimension `dim`.
If `dim` is `None`, maximum value of the entire Array is returned.
"""
if dim is not None:
return _parallel_dim(a, dim, backend.get().af_max)
else:
return _reduce_all(a, backend.get().af_max_all)
[docs]def maxByKey(keys, vals, dim=-1):
"""
Calculate the max of elements along a specified dimension according to a key.
Parameters
----------
keys : af.Array
One dimensional arrayfire array with reduction keys.
vals : af.Array
Multi dimensional arrayfire array that will be reduced.
dim: optional: int. default: -1
Dimension along which the max will occur.
Returns
-------
keys: af.Array or scalar number
The reduced keys of all elements in `vals` along dimension `dim`.
values: af.Array or scalar number
The max of all elements in `vals` along dimension `dim` according to keys.
"""
return _rbk_dim(keys, vals, dim, backend.get().af_max_by_key)
[docs]def all_true(a, dim=None):
"""
Check if all the elements along a specified dimension are true.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the product is required.
Returns
-------
out: af.Array or scalar number
Af.array containing True if all elements in `a` along the dimension are True.
If `dim` is `None`, output is True if `a` does not have any zeros, else False.
"""
if dim is not None:
return _parallel_dim(a, dim, backend.get().af_all_true)
else:
return _reduce_all(a, backend.get().af_all_true_all)
[docs]def allTrueByKey(keys, vals, dim=-1):
"""
Calculate if all elements are true along a specified dimension according to a key.
Parameters
----------
keys : af.Array
One dimensional arrayfire array with reduction keys.
vals : af.Array
Multi dimensional arrayfire array that will be reduced.
dim: optional: int. default: -1
Dimension along which the all true check will occur.
Returns
-------
keys: af.Array or scalar number
The reduced keys of all true check in `vals` along dimension `dim`.
values: af.Array or scalar number
Booleans denoting if all elements are true in `vals` along dimension `dim` according to keys
"""
return _rbk_dim(keys, vals, dim, backend.get().af_all_true_by_key)
[docs]def any_true(a, dim=None):
"""
Check if any the elements along a specified dimension are true.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the product is required.
Returns
-------
out: af.Array or scalar number
Af.array containing True if any elements in `a` along the dimension are True.
If `dim` is `None`, output is True if `a` does not have any zeros, else False.
"""
if dim is not None:
return _parallel_dim(a, dim, backend.get().af_any_true)
else:
return _reduce_all(a, backend.get().af_any_true_all)
[docs]def anyTrueByKey(keys, vals, dim=-1):
"""
Calculate if any elements are true along a specified dimension according to a key.
Parameters
----------
keys : af.Array
One dimensional arrayfire array with reduction keys.
vals : af.Array
Multi dimensional arrayfire array that will be reduced.
dim: optional: int. default: -1
Dimension along which the any true check will occur.
Returns
-------
keys: af.Array or scalar number
The reduced keys of any true check in `vals` along dimension `dim`.
values: af.Array or scalar number
Booleans denoting if any elements are true in `vals` along dimension `dim` according to keys.
"""
return _rbk_dim(keys, vals, dim, backend.get().af_any_true_by_key)
[docs]def count(a, dim=None):
"""
Count the number of non zero elements in an array along a specified dimension.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the the non zero elements are to be counted.
Returns
-------
out: af.Array or scalar number
The count of non zero elements in `a` along `dim`.
If `dim` is `None`, the total number of non zero elements in `a`.
"""
if dim is not None:
return _parallel_dim(a, dim, backend.get().af_count)
else:
return _reduce_all(a, backend.get().af_count_all)
[docs]def countByKey(keys, vals, dim=-1):
"""
Counts non-zero elements along a specified dimension according to a key.
Parameters
----------
keys : af.Array
One dimensional arrayfire array with reduction keys.
vals : af.Array
Multi dimensional arrayfire array that will be reduced.
dim: optional: int. default: -1
Dimension along which to count elements.
Returns
-------
keys: af.Array or scalar number
The reduced keys of count in `vals` along dimension `dim`.
values: af.Array or scalar number
Count of non-zero elements in `vals` along dimension `dim` according to keys.
"""
return _rbk_dim(keys, vals, dim, backend.get().af_count_by_key)
[docs]def imin(a, dim=None):
"""
Find the value and location of the minimum value along a specified dimension
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the minimum value is required.
Returns
-------
(val, idx): tuple of af.Array or scalars
`val` contains the minimum value of `a` along `dim`.
`idx` contains the location of where `val` occurs in `a` along `dim`.
If `dim` is `None`, `val` and `idx` value and location of global minimum.
"""
if dim is not None:
out = Array()
idx = Array()
safe_call(backend.get().af_imin(c_pointer(out.arr), c_pointer(idx.arr), a.arr, c_int_t(dim)))
return out,idx
else:
real = c_double_t(0)
imag = c_double_t(0)
idx = c_uint_t(0)
safe_call(backend.get().af_imin_all(c_pointer(real), c_pointer(imag), c_pointer(idx), a.arr))
real = real.value
imag = imag.value
val = real if imag == 0 else real + imag * 1j
return val,idx.value
[docs]def imax(a, dim=None):
"""
Find the value and location of the maximum value along a specified dimension
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: None
Dimension along which the maximum value is required.
Returns
-------
(val, idx): tuple of af.Array or scalars
`val` contains the maximum value of `a` along `dim`.
`idx` contains the location of where `val` occurs in `a` along `dim`.
If `dim` is `None`, `val` and `idx` value and location of global maximum.
"""
if dim is not None:
out = Array()
idx = Array()
safe_call(backend.get().af_imax(c_pointer(out.arr), c_pointer(idx.arr), a.arr, c_int_t(dim)))
return out,idx
else:
real = c_double_t(0)
imag = c_double_t(0)
idx = c_uint_t(0)
safe_call(backend.get().af_imax_all(c_pointer(real), c_pointer(imag), c_pointer(idx), a.arr))
real = real.value
imag = imag.value
val = real if imag == 0 else real + imag * 1j
return val,idx.value
[docs]def accum(a, dim=0):
"""
Cumulative sum of an array along a specified dimension
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: 0
Dimension along which the cumulative sum is required.
Returns
-------
out: af.Array
array of same size as `a` containing the cumulative sum along `dim`.
"""
return _parallel_dim(a, dim, backend.get().af_accum)
[docs]def scan(a, dim=0, op=BINARYOP.ADD, inclusive_scan=True):
"""
Generalized scan of an array.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim : optional: int. default: 0
Dimension along which the scan is performed.
op : optional: af.BINARYOP. default: af.BINARYOP.ADD.
Binary option the scan algorithm uses. Can be one of:
- af.BINARYOP.ADD
- af.BINARYOP.MUL
- af.BINARYOP.MIN
- af.BINARYOP.MAX
inclusive_scan: optional: bool. default: True
Specifies if the scan is inclusive
Returns
---------
out : af.Array
- will contain scan of input.
"""
out = Array()
safe_call(backend.get().af_scan(c_pointer(out.arr), a.arr, dim, op.value, inclusive_scan))
return out
[docs]def scan_by_key(key, a, dim=0, op=BINARYOP.ADD, inclusive_scan=True):
"""
Generalized scan by key of an array.
Parameters
----------
key : af.Array
key array.
a : af.Array
Multi dimensional arrayfire array.
dim : optional: int. default: 0
Dimension along which the scan is performed.
op : optional: af.BINARYOP. default: af.BINARYOP.ADD.
Binary option the scan algorithm uses. Can be one of:
- af.BINARYOP.ADD
- af.BINARYOP.MUL
- af.BINARYOP.MIN
- af.BINARYOP.MAX
inclusive_scan: optional: bool. default: True
Specifies if the scan is inclusive
Returns
---------
out : af.Array
- will contain scan of input.
"""
out = Array()
safe_call(backend.get().af_scan_by_key(c_pointer(out.arr), key.arr, a.arr, dim, op.value, inclusive_scan))
return out
[docs]def where(a):
"""
Find the indices of non zero elements
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
Returns
-------
idx: af.Array
Linear indices for non zero elements.
"""
out = Array()
safe_call(backend.get().af_where(c_pointer(out.arr), a.arr))
return out
[docs]def diff1(a, dim=0):
"""
Find the first order differences along specified dimensions
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: 0
Dimension along which the differences are required.
Returns
-------
out: af.Array
Array whose length along `dim` is 1 less than that of `a`.
"""
return _parallel_dim(a, dim, backend.get().af_diff1)
[docs]def diff2(a, dim=0):
"""
Find the second order differences along specified dimensions
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: 0
Dimension along which the differences are required.
Returns
-------
out: af.Array
Array whose length along `dim` is 2 less than that of `a`.
"""
return _parallel_dim(a, dim, backend.get().af_diff2)
[docs]def sort(a, dim=0, is_ascending=True):
"""
Sort the array along a specified dimension
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: 0
Dimension along which sort is to be performed.
is_ascending: optional: bool. default: True
Specifies the direction of the sort
Returns
-------
out: af.Array
array containing the sorted values
Note
-------
Currently `dim` is only supported for 0.
"""
out = Array()
safe_call(backend.get().af_sort(c_pointer(out.arr), a.arr, c_uint_t(dim), c_bool_t(is_ascending)))
return out
[docs]def sort_index(a, dim=0, is_ascending=True):
"""
Sort the array along a specified dimension and get the indices.
Parameters
----------
a : af.Array
Multi dimensional arrayfire array.
dim: optional: int. default: 0
Dimension along which sort is to be performed.
is_ascending: optional: bool. default: True
Specifies the direction of the sort
Returns
-------
(val, idx): tuple of af.Array
`val` is an af.Array containing the sorted values.
`idx` is an af.Array containing the original indices of `val` in `a`.
Note
-------
Currently `dim` is only supported for 0.
"""
out = Array()
idx = Array()
safe_call(backend.get().af_sort_index(c_pointer(out.arr), c_pointer(idx.arr), a.arr,
c_uint_t(dim), c_bool_t(is_ascending)))
return out,idx
[docs]def sort_by_key(ik, iv, dim=0, is_ascending=True):
"""
Sort an array based on specified keys
Parameters
----------
ik : af.Array
An Array containing the keys
iv : af.Array
An Array containing the values
dim: optional: int. default: 0
Dimension along which sort is to be performed.
is_ascending: optional: bool. default: True
Specifies the direction of the sort
Returns
-------
(ok, ov): tuple of af.Array
`ok` contains the values from `ik` in sorted order
`ov` contains the values from `iv` after sorting them based on `ik`
Note
-------
Currently `dim` is only supported for 0.
"""
ov = Array()
ok = Array()
safe_call(backend.get().af_sort_by_key(c_pointer(ok.arr), c_pointer(ov.arr),
ik.arr, iv.arr, c_uint_t(dim), c_bool_t(is_ascending)))
return ov,ok
[docs]def set_unique(a, is_sorted=False):
"""
Find the unique elements of an array.
Parameters
----------
a : af.Array
A 1D arrayfire array.
is_sorted: optional: bool. default: False
Specifies if the input is pre-sorted.
Returns
-------
out: af.Array
an array containing the unique values from `a`
"""
out = Array()
safe_call(backend.get().af_set_unique(c_pointer(out.arr), a.arr, c_bool_t(is_sorted)))
return out
[docs]def set_union(a, b, is_unique=False):
"""
Find the union of two arrays.
Parameters
----------
a : af.Array
A 1D arrayfire array.
b : af.Array
A 1D arrayfire array.
is_unique: optional: bool. default: False
Specifies if the both inputs contain unique elements.
Returns
-------
out: af.Array
an array values after performing the union of `a` and `b`.
"""
out = Array()
safe_call(backend.get().af_set_union(c_pointer(out.arr), a.arr, b.arr, c_bool_t(is_unique)))
return out
[docs]def set_intersect(a, b, is_unique=False):
"""
Find the intersect of two arrays.
Parameters
----------
a : af.Array
A 1D arrayfire array.
b : af.Array
A 1D arrayfire array.
is_unique: optional: bool. default: False
Specifies if the both inputs contain unique elements.
Returns
-------
out: af.Array
an array values after performing the intersect of `a` and `b`.
"""
out = Array()
safe_call(backend.get().af_set_intersect(c_pointer(out.arr), a.arr, b.arr, c_bool_t(is_unique)))
return out