1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
use super::core::{
    af_array, dim_t, AfError, Array, CovarianceComputable, HasAfEnum, MedianComputable,
    RealFloating, RealNumber, TopkFn, VarianceBias, HANDLE_ERROR,
};

use libc::{c_double, c_int, c_uint};

extern "C" {
    fn af_mean(out: *mut af_array, arr: af_array, dim: dim_t) -> c_int;
    fn af_median(out: *mut af_array, arr: af_array, dim: dim_t) -> c_int;

    fn af_mean_weighted(out: *mut af_array, arr: af_array, wts: af_array, dim: dim_t) -> c_int;
    fn af_var_weighted(out: *mut af_array, arr: af_array, wts: af_array, dim: dim_t) -> c_int;

    fn af_mean_all(real: *mut c_double, imag: *mut c_double, arr: af_array) -> c_int;
    fn af_median_all(real: *mut c_double, imag: *mut c_double, arr: af_array) -> c_int;

    fn af_mean_all_weighted(
        real: *mut c_double,
        imag: *mut c_double,
        arr: af_array,
        wts: af_array,
    ) -> c_int;
    fn af_var_all_weighted(
        real: *mut c_double,
        imag: *mut c_double,
        arr: af_array,
        wts: af_array,
    ) -> c_int;

    fn af_corrcoef(real: *mut c_double, imag: *mut c_double, X: af_array, Y: af_array) -> c_int;
    fn af_topk(
        vals: *mut af_array,
        idxs: *mut af_array,
        arr: af_array,
        k: c_int,
        dim: c_int,
        order: c_uint,
    ) -> c_int;

    fn af_meanvar(
        mean: *mut af_array,
        var: *mut af_array,
        input: af_array,
        weights: af_array,
        bias: c_uint,
        dim: dim_t,
    ) -> c_int;
    fn af_var_v2(out: *mut af_array, arr: af_array, bias_kind: c_uint, dim: dim_t) -> c_int;
    fn af_cov_v2(out: *mut af_array, X: af_array, Y: af_array, bias_kind: c_uint) -> c_int;
    fn af_stdev_v2(out: *mut af_array, arr: af_array, bias_kind: c_uint, dim: dim_t) -> c_int;
    fn af_var_all_v2(
        real: *mut c_double,
        imag: *mut c_double,
        arr: af_array,
        bias_kind: c_uint,
    ) -> c_int;
    fn af_stdev_all_v2(
        real: *mut c_double,
        imag: *mut c_double,
        arr: af_array,
        bias_kind: c_uint,
    ) -> c_int;
}

/// Find the median along a given dimension
///
///# Parameters
///
/// - `input` is the input Array
/// - `dim` is dimension along which median has to be found
///
///# Return Values
///
/// An Array whose size is equal to input except along the dimension which
/// median needs to be found. Array size along `dim` will be reduced to one.
pub fn median<T>(input: &Array<T>, dim: i64) -> Array<T>
where
    T: HasAfEnum + MedianComputable,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_median(&mut temp as *mut af_array, input.get(), dim);
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

macro_rules! stat_func_def {
    ($doc_str: expr, $fn_name: ident, $ffi_fn: ident) => {
        #[doc=$doc_str]
        ///
        ///# Parameters
        ///
        /// - `input` is the input Array
        /// - `dim` is dimension along which the current stat has to be computed
        ///
        ///# Return Values
        ///
        /// An Array whose size is equal to input except along the dimension which
        /// the stat operation is performed. Array size along `dim` will be reduced to one.
        pub fn $fn_name<T>(input: &Array<T>, dim: i64) -> Array<T::MeanOutType>
        where
            T: HasAfEnum,
            T::MeanOutType: HasAfEnum,
        {
            unsafe {
                let mut temp: af_array = std::ptr::null_mut();
                let err_val = $ffi_fn(&mut temp as *mut af_array, input.get(), dim);
                HANDLE_ERROR(AfError::from(err_val));
                temp.into()
            }
        }
    };
}

stat_func_def!("Mean along specified dimension", mean, af_mean);

macro_rules! stat_wtd_func_def {
    ($doc_str: expr, $fn_name: ident, $ffi_fn: ident) => {
        #[doc=$doc_str]
        ///
        ///# Parameters
        ///
        /// - `input` is the input Array
        /// - `weights` Array has the weights to be used during the stat computation
        /// - `dim` is dimension along which the current stat has to be computed
        ///
        ///# Return Values
        ///
        /// An Array whose size is equal to input except along the dimension which
        /// the stat operation is performed. Array size along `dim` will be reduced to one.
        pub fn $fn_name<T, W>(
            input: &Array<T>,
            weights: &Array<W>,
            dim: i64,
        ) -> Array<T::MeanOutType>
        where
            T: HasAfEnum,
            T::MeanOutType: HasAfEnum,
            W: HasAfEnum + RealFloating,
        {
            unsafe {
                let mut temp: af_array = std::ptr::null_mut();
                let err_val = $ffi_fn(&mut temp as *mut af_array,input.get(), weights.get(), dim);
                HANDLE_ERROR(AfError::from(err_val));
                temp.into()
            }
        }
    };
}

stat_wtd_func_def!(
    "Weighted mean along specified dimension",
    mean_weighted,
    af_mean_weighted
);
stat_wtd_func_def!(
    "Weight variance along specified dimension",
    var_weighted,
    af_var_weighted
);

/// Compute Variance along a specific dimension
///
/// # Parameters
///
/// - `arr` is the input Array
/// - `bias_kind` of type [VarianceBias][1] denotes the type of variane to be computed
/// - `dim` is the dimension along which the variance is extracted
///
/// # Return Values
///
/// Array with variance of input Array `arr` along dimension `dim`.
///
/// [1]: ./enum.VarianceBias.html
pub fn var_v2<T>(arr: &Array<T>, bias_kind: VarianceBias, dim: i64) -> Array<T::MeanOutType>
where
    T: HasAfEnum,
    T::MeanOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_var_v2(
            &mut temp as *mut af_array,
            arr.get(),
            bias_kind as c_uint,
            dim,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Compute Variance along a specific dimension
///
/// # Parameters
///
/// - `arr` is the input Array
/// - `isbiased` is boolean denoting population variance(False) or Sample variance(True)
/// - `dim` is the dimension along which the variance is extracted
///
/// # Return Values
///
/// Array with variance of input Array `arr` along dimension `dim`.
#[deprecated(since = "3.8.0", note = "Please use var_v2 API")]
pub fn var<T>(arr: &Array<T>, isbiased: bool, dim: i64) -> Array<T::MeanOutType>
where
    T: HasAfEnum,
    T::MeanOutType: HasAfEnum,
{
    var_v2(
        arr,
        if isbiased {
            VarianceBias::SAMPLE
        } else {
            VarianceBias::POPULATION
        },
        dim,
    )
}

/// Compute covariance of two Arrays
///
/// # Parameters
///
/// - `x` is the first Array
/// - `y` is the second Array
/// - `bias_kind` of type [VarianceBias][1] denotes the type of variane to be computed
///
/// # Return Values
///
/// An Array with Covariance values
///
/// [1]: ./enum.VarianceBias.html
pub fn cov_v2<T>(x: &Array<T>, y: &Array<T>, bias_kind: VarianceBias) -> Array<T::MeanOutType>
where
    T: HasAfEnum + CovarianceComputable,
    T::MeanOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_cov_v2(
            &mut temp as *mut af_array,
            x.get(),
            y.get(),
            bias_kind as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Compute covariance of two Arrays
///
/// # Parameters
///
/// - `x` is the first Array
/// - `y` is the second Array
/// - `isbiased` is boolean denoting if biased estimate should be taken(default: False)
///
/// # Return Values
///
/// An Array with Covariance values
#[deprecated(since = "3.8.0", note = "Please use cov_v2 API")]
pub fn cov<T>(x: &Array<T>, y: &Array<T>, isbiased: bool) -> Array<T::MeanOutType>
where
    T: HasAfEnum + CovarianceComputable,
    T::MeanOutType: HasAfEnum,
{
    cov_v2(
        x,
        y,
        if isbiased {
            VarianceBias::SAMPLE
        } else {
            VarianceBias::POPULATION
        },
    )
}

/// Compute Variance of all elements
///
/// # Parameters
///
/// - `input` is the input Array
/// - `bias_kind` of type [VarianceBias][1] denotes the type of variane to be computed
///
/// # Return Values
///
/// A tuple of 64-bit floating point values that has the variance of `input` Array.
///
/// [1]: ./enum.VarianceBias.html
pub fn var_all_v2<T: HasAfEnum>(input: &Array<T>, bias_kind: VarianceBias) -> (f64, f64) {
    let mut real: f64 = 0.0;
    let mut imag: f64 = 0.0;
    unsafe {
        let err_val = af_var_all_v2(
            &mut real as *mut c_double,
            &mut imag as *mut c_double,
            input.get(),
            bias_kind as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
    }
    (real, imag)
}

/// Compute Variance of all elements
///
/// # Parameters
///
/// - `input` is the input Array
/// - `isbiased` is boolean denoting population variance(False) or sample variance(True)
///
/// # Return Values
///
/// A tuple of 64-bit floating point values that has the variance of `input` Array.
#[deprecated(since = "3.8.0", note = "Please use var_all_v2 API")]
pub fn var_all<T: HasAfEnum>(input: &Array<T>, isbiased: bool) -> (f64, f64) {
    var_all_v2(
        input,
        if isbiased {
            VarianceBias::SAMPLE
        } else {
            VarianceBias::POPULATION
        },
    )
}

macro_rules! stat_all_func_def {
    ($doc_str: expr, $fn_name: ident, $ffi_fn: ident) => {
        #[doc=$doc_str]
        ///
        ///# Parameters
        ///
        /// - `input` is the input Array
        ///
        ///# Return Values
        ///
        /// A tuple of 64-bit floating point values with the stat values.
        pub fn $fn_name<T: HasAfEnum>(input: &Array<T>) -> (f64, f64) {
            let mut real: f64 = 0.0;
            let mut imag: f64 = 0.0;
            unsafe {
                let err_val = $ffi_fn(
                    &mut real as *mut c_double,
                    &mut imag as *mut c_double,
                    input.get(),
                );
                HANDLE_ERROR(AfError::from(err_val));
            }
            (real, imag)
        }
    };
}

stat_all_func_def!("Compute mean of all data", mean_all, af_mean_all);

/// Compute median of all data
///
///# Parameters
///
/// - `input` is the input Array
///
///# Return Values
///
/// A tuple of 64-bit floating point values with the median
pub fn median_all<T>(input: &Array<T>) -> (f64, f64)
where
    T: HasAfEnum + MedianComputable,
{
    let mut real: f64 = 0.0;
    let mut imag: f64 = 0.0;
    unsafe {
        let err_val = af_median_all(
            &mut real as *mut c_double,
            &mut imag as *mut c_double,
            input.get(),
        );
        HANDLE_ERROR(AfError::from(err_val));
    }
    (real, imag)
}

macro_rules! stat_wtd_all_func_def {
    ($doc_str: expr, $fn_name: ident, $ffi_fn: ident) => {
        #[doc=$doc_str]
        ///
        ///# Parameters
        ///
        /// - `input` is the input Array
        /// - `weights` Array has the weights
        ///
        ///# Return Values
        ///
        /// A tuple of 64-bit floating point values with the stat values.
        pub fn $fn_name<T, W>(input: &Array<T>, weights: &Array<W>) -> (f64, f64)
        where
            T: HasAfEnum,
            W: HasAfEnum + RealFloating,
        {
            let mut real: f64 = 0.0;
            let mut imag: f64 = 0.0;
            unsafe {
                let err_val = $ffi_fn(
                    &mut real as *mut c_double,
                    &mut imag as *mut c_double,
                    input.get(),
                    weights.get(),
                );
                HANDLE_ERROR(AfError::from(err_val));
            }
            (real, imag)
        }
    };
}

stat_wtd_all_func_def!(
    "Compute weighted mean of all data",
    mean_all_weighted,
    af_mean_all_weighted
);
stat_wtd_all_func_def!(
    "Compute weighted variance of all data",
    var_all_weighted,
    af_var_all_weighted
);

/// Compute correlation coefficient
///
/// # Parameters
///
/// - `x` is the first Array
/// - `y` isthe second Array
///
/// # Return Values
/// A tuple of 64-bit floating point values with the coefficients.
pub fn corrcoef<T>(x: &Array<T>, y: &Array<T>) -> (f64, f64)
where
    T: HasAfEnum + RealNumber,
{
    let mut real: f64 = 0.0;
    let mut imag: f64 = 0.0;
    unsafe {
        let err_val = af_corrcoef(
            &mut real as *mut c_double,
            &mut imag as *mut c_double,
            x.get(),
            y.get(),
        );
        HANDLE_ERROR(AfError::from(err_val));
    }
    (real, imag)
}

/// Find top k elements along a given dimension
///
/// This function returns the top k values along a given dimension of the input
/// array. The indices along with their values are returned.
///
/// If the input is a multi-dimensional array, the indices will be the index of
/// the value in that dimension. Order of duplicate values are not preserved.
///
/// This function is optimized for small values of k. Currently, topk elements
/// can be found only along dimension 0.
///
/// # Parameters
///
/// - `input` is the values from which top k elements are to be retrieved
/// - `k` is the number of top elements to be retrieve
/// - `dim` is the dimension along which the retrieval operation has to performed
/// - `order` is an enum that can take values of type [TopkFn](./enum.TopkFn.html)
///
/// # Return Values
///
/// A tuple(couple) of Array's with the first Array containing the topk values
/// with the second Array containing the indices of the topk values in the input
/// data.
pub fn topk<T>(input: &Array<T>, k: u32, dim: i32, order: TopkFn) -> (Array<T>, Array<u32>)
where
    T: HasAfEnum,
{
    unsafe {
        let mut t0: af_array = std::ptr::null_mut();
        let mut t1: af_array = std::ptr::null_mut();
        let err_val = af_topk(
            &mut t0 as *mut af_array,
            &mut t1 as *mut af_array,
            input.get(),
            k as c_int,
            dim as c_int,
            order as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        (t0.into(), t1.into())
    }
}

/// Calculate mean and variance in single API call
///
///# Parameters
///
/// - `input` is the input Array
/// - `weights` Array has the weights to be used during the stat computation
/// - `bias` is type of bias used for variance calculation
/// - `dim` is dimension along which the current stat has to be computed
///
///# Return Values
///
/// A tuple of Arrays, whose size is equal to input except along the dimension which
/// the stat operation is performed. Array size along `dim` will be reduced to one.
///
/// - First Array contains mean values
/// - Second Array contains variance values
pub fn meanvar<T, W>(
    input: &Array<T>,
    weights: &Array<W>,
    bias: VarianceBias,
    dim: i64,
) -> (Array<T::MeanOutType>, Array<T::MeanOutType>)
where
    T: HasAfEnum,
    T::MeanOutType: HasAfEnum,
    W: HasAfEnum + RealFloating,
{
    unsafe {
        let mut mean: af_array = std::ptr::null_mut();
        let mut var: af_array = std::ptr::null_mut();
        let err_val = af_meanvar(
            &mut mean as *mut af_array,
            &mut var as *mut af_array,
            input.get(),
            weights.get(),
            bias as c_uint,
            dim,
        );
        HANDLE_ERROR(AfError::from(err_val));
        (mean.into(), var.into())
    }
}

/// Standard deviation along given axis
///
///# Parameters
///
/// - `input` is the input Array
/// - `bias_kind` of type [VarianceBias][1] denotes the type of variane to be computed
/// - `dim` is dimension along which the current stat has to be computed
///
///# Return Values
///
/// An Array whose size is equal to input except along the dimension which
/// the stat operation is performed. Array size along `dim` will be reduced to one.
///
/// [1]: ./enum.VarianceBias.html
pub fn stdev_v2<T>(input: &Array<T>, bias_kind: VarianceBias, dim: i64) -> Array<T::MeanOutType>
where
    T: HasAfEnum,
    T::MeanOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_stdev_v2(
            &mut temp as *mut af_array,
            input.get(),
            bias_kind as c_uint,
            dim,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Standard deviation along specified axis
///
///# Parameters
///
/// - `input` is the input Array
/// - `dim` is dimension along which the current stat has to be computed
///
///# Return Values
///
/// An Array whose size is equal to input except along the dimension which
/// the stat operation is performed. Array size along `dim` will be reduced to one.
#[deprecated(since = "3.8.0", note = "Please use stdev_v2 API")]
pub fn stdev<T>(input: &Array<T>, dim: i64) -> Array<T::MeanOutType>
where
    T: HasAfEnum,
    T::MeanOutType: HasAfEnum,
{
    stdev_v2(input, VarianceBias::POPULATION, dim)
}

/// Compute standard deviation of all data
///
///# Parameters
///
/// - `input` is the input Array
/// - `bias_kind` of type [VarianceBias][1] denotes the type of variane to be computed
///
///# Return Values
///
/// A tuple of 64-bit floating point values with the stat values.
///
/// [1]: ./enum.VarianceBias.html
pub fn stdev_all_v2<T: HasAfEnum>(input: &Array<T>, bias_kind: VarianceBias) -> (f64, f64) {
    let mut real: f64 = 0.0;
    let mut imag: f64 = 0.0;
    unsafe {
        let err_val = af_stdev_all_v2(
            &mut real as *mut c_double,
            &mut imag as *mut c_double,
            input.get(),
            bias_kind as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
    }
    (real, imag)
}

/// Compute standard deviation of all data
///
///# Parameters
///
/// - `input` is the input Array
///
///# Return Values
///
/// A tuple of 64-bit floating point values with the stat values.
pub fn stdev_all<T: HasAfEnum>(input: &Array<T>) -> (f64, f64) {
    stdev_all_v2(input, VarianceBias::POPULATION)
}