1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
use super::core::{ af_array, dim_t, AfError, Array, BorderType, CannyThresholdType, ColorSpace, ConfidenceCCInput, Connectivity, DeconvInput, DiffusionEq, EdgeComputable, FloatingPoint, FluxFn, GrayRGBConvertible, HasAfEnum, ImageFilterType, ImageNativeType, InterpType, InverseDeconvAlgo, IterativeDeconvAlgo, MomentType, MomentsComputable, RealFloating, RealNumber, YCCStd, HANDLE_ERROR, }; use libc::{c_char, c_double, c_float, c_int, c_uint}; use std::ffi::CString; // unused functions from image.h header // TODO add later when requested // af_load_image_memory // af_save_image_memory // af_delete_image_memory extern "C" { fn af_cast(out: *mut af_array, arr: af_array, aftype: c_uint) -> c_int; fn af_gradient(dx: *mut af_array, dy: *mut af_array, arr: af_array) -> c_int; fn af_load_image(out: *mut af_array, filename: *const c_char, iscolor: bool) -> c_int; fn af_save_image(filename: *const c_char, input: af_array) -> c_int; fn af_load_image_native(out: *mut af_array, filename: *const c_char) -> c_int; fn af_save_image_native(filename: *const c_char, input: af_array) -> c_int; fn af_resize( out: *mut af_array, input: af_array, odim0: dim_t, odim1: dim_t, method: c_uint, ) -> c_int; fn af_transform( out: *mut af_array, input: af_array, trans: af_array, odim0: dim_t, odim1: dim_t, method: c_uint, is_inverse: bool, ) -> c_int; fn af_rotate( out: *mut af_array, input: af_array, theta: c_float, crop: bool, method: c_uint, ) -> c_int; fn af_translate( out: *mut af_array, input: af_array, trans0: c_float, trans1: c_float, odim0: dim_t, odim1: dim_t, method: c_uint, ) -> c_int; fn af_scale( out: *mut af_array, input: af_array, scale0: c_float, scale1: c_float, odim0: dim_t, odim1: dim_t, method: c_uint, ) -> c_int; fn af_skew( out: *mut af_array, input: af_array, skew0: c_float, skew1: c_float, odim0: dim_t, odim1: dim_t, method: c_uint, is_inverse: bool, ) -> c_int; fn af_histogram( out: *mut af_array, input: af_array, nbins: c_uint, minval: c_double, maxval: c_double, ) -> c_int; fn af_dilate(out: *mut af_array, input: af_array, mask: af_array) -> c_int; fn af_dilate3(out: *mut af_array, input: af_array, mask: af_array) -> c_int; fn af_erode(out: *mut af_array, input: af_array, mask: af_array) -> c_int; fn af_erode3(out: *mut af_array, input: af_array, mask: af_array) -> c_int; fn af_regions(out: *mut af_array, input: af_array, conn: c_uint, aftype: c_uint) -> c_int; fn af_sobel_operator(dx: *mut af_array, dy: *mut af_array, i: af_array, ksize: c_uint) -> c_int; fn af_rgb2gray( out: *mut af_array, input: af_array, r: c_float, g: c_float, b: c_float, ) -> c_int; fn af_gray2rgb( out: *mut af_array, input: af_array, r: c_float, g: c_float, b: c_float, ) -> c_int; fn af_hist_equal(out: *mut af_array, input: af_array, hist: af_array) -> c_int; fn af_hsv2rgb(out: *mut af_array, input: af_array) -> c_int; fn af_rgb2hsv(out: *mut af_array, input: af_array) -> c_int; fn af_bilateral( out: *mut af_array, input: af_array, sp_sig: c_float, ch_sig: c_float, iscolor: bool, ) -> c_int; fn af_mean_shift( out: *mut af_array, input: af_array, sp_sig: c_float, ch_sig: c_float, iter: c_uint, iscolor: bool, ) -> c_int; fn af_medfilt( out: *mut af_array, input: af_array, wlen: dim_t, wwid: dim_t, etype: c_uint, ) -> c_int; fn af_medfilt1(out: *mut af_array, input: af_array, wlen: dim_t, etype: c_uint) -> c_int; fn af_minfilt( out: *mut af_array, input: af_array, wlen: dim_t, wwid: dim_t, etype: c_uint, ) -> c_int; fn af_maxfilt( out: *mut af_array, input: af_array, wlen: dim_t, wwid: dim_t, etype: c_uint, ) -> c_int; fn af_gaussian_kernel( out: *mut af_array, rows: c_int, cols: c_int, sigma_r: c_double, sigma_c: c_double, ) -> c_int; fn af_color_space( out: *mut af_array, input: af_array, tospace: c_uint, fromspace: c_uint, ) -> c_int; fn af_unwrap( out: *mut af_array, input: af_array, wx: dim_t, wy: dim_t, sx: dim_t, sy: dim_t, px: dim_t, py: dim_t, is_column: bool, ) -> c_int; fn af_wrap( out: *mut af_array, input: af_array, ox: dim_t, oy: dim_t, wx: dim_t, wy: dim_t, sx: dim_t, sy: dim_t, px: dim_t, py: dim_t, is_column: bool, ) -> c_int; fn af_sat(out: *mut af_array, input: af_array) -> c_int; fn af_ycbcr2rgb(out: *mut af_array, input: af_array, stnd: c_uint) -> c_int; fn af_rgb2ycbcr(out: *mut af_array, input: af_array, stnd: c_uint) -> c_int; fn af_is_image_io_available(out: *mut bool) -> c_int; fn af_transform_coordinates( out: *mut af_array, tf: af_array, d0: c_float, d1: c_float, ) -> c_int; fn af_moments(out: *mut af_array, input: af_array, moment: c_uint) -> c_int; fn af_moments_all(out: *mut c_double, input: af_array, moment: c_uint) -> c_int; fn af_canny( out: *mut af_array, input: af_array, thres_type: c_int, low: c_float, high: c_float, swindow: c_uint, is_fast: bool, ) -> c_int; fn af_anisotropic_diffusion( out: *mut af_array, input: af_array, dt: c_float, K: c_float, iters: c_uint, fftype: c_uint, diff_kind: c_uint, ) -> c_int; fn af_confidence_cc( out: *mut af_array, input: af_array, seedx: af_array, seedy: af_array, radius: c_uint, multiplier: c_uint, iterations: c_int, seg_val: c_double, ) -> c_int; fn af_iterative_deconv( out: *mut af_array, input: af_array, ker: af_array, iterations: c_uint, rfactor: c_float, algo: c_uint, ) -> c_int; fn af_inverse_deconv( out: *mut af_array, input: af_array, ker: af_array, gamma: c_float, algo: c_uint, ) -> c_int; } /// Calculate the gradients /// /// The gradients along the first and second dimensions are calculated simultaneously. /// /// # Parameters /// /// - `input` is the input Array /// /// # Return Values /// /// A tuple of Arrays. /// /// The first Array is `dx` which is the gradient along the 1st dimension. /// /// The second Array is `dy` which is the gradient along the 2nd dimension. pub fn gradient<T>(input: &Array<T>) -> (Array<T>, Array<T>) where T: HasAfEnum + FloatingPoint, { unsafe { let mut dx: af_array = std::ptr::null_mut(); let mut dy: af_array = std::ptr::null_mut(); let err_val = af_gradient( &mut dx as *mut af_array, &mut dy as *mut af_array, input.get(), ); HANDLE_ERROR(AfError::from(err_val)); (dx.into(), dy.into()) } } /// Load Image into Array /// /// Only, Images with 8/16/32 bits per channel can be loaded using this function. /// /// # Parameters /// /// - `filename` is aboslute path of the image to be loaded. /// - `is_color` indicates if the image file at given path is color or gray scale. /// /// # Return Arrays /// /// An Array with pixel values loaded from the image #[allow(clippy::match_wild_err_arm)] pub fn load_image<T>(filename: String, is_color: bool) -> Array<T> where T: HasAfEnum + RealNumber, { let cstr_param = match CString::new(filename) { Ok(cstr) => cstr, Err(_) => panic!("CString creation from input filename failed"), }; let trgt_type = T::get_af_dtype(); unsafe { let mut temp: af_array = std::ptr::null_mut(); let err1 = af_load_image(&mut temp as *mut af_array, cstr_param.as_ptr(), is_color); HANDLE_ERROR(AfError::from(err1)); let mut img: af_array = std::ptr::null_mut(); let err2 = af_cast(&mut img as *mut af_array, temp, trgt_type as c_uint); HANDLE_ERROR(AfError::from(err2)); img.into() } } /// Load Image into Array in it's native type /// /// This load image function allows you to load images as U8, U16 or F32 /// depending on the type of input image as shown by the table below. /// /// Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Array Type | Range /// -----------------------------------------------|-------------|--------------- /// 8 ( 8/24/32 BPP) | u8 | 0 - 255 /// 16 (16/48/64 BPP) | u16 | 0 - 65535 /// 32 (32/96/128 BPP) | f32 | 0 - 1 /// /// # Parameters /// /// - `filename` is name of file to be loaded /// /// # Return Arrays /// /// An Array with pixel values loaded from the image #[allow(clippy::match_wild_err_arm)] pub fn load_image_native<T>(filename: String) -> Array<T> where T: HasAfEnum + ImageNativeType, { let cstr_param = match CString::new(filename) { Ok(cstr) => cstr, Err(_) => panic!("CString creation from input filename failed"), }; let trgt_type = T::get_af_dtype(); unsafe { let mut temp: af_array = std::ptr::null_mut(); let err1 = af_load_image_native(&mut temp as *mut af_array, cstr_param.as_ptr()); HANDLE_ERROR(AfError::from(err1)); let mut img: af_array = std::ptr::null_mut(); let err2 = af_cast(&mut img as *mut af_array, temp, trgt_type as c_uint); HANDLE_ERROR(AfError::from(err2)); img.into() } } /// Save an Array to an image file /// /// # Parameters /// /// - `filename` is the abolute path(includes filename) at which input Array is going to be saved /// - `input` is the Array to be stored into the image file #[allow(clippy::match_wild_err_arm)] pub fn save_image<T>(filename: String, input: &Array<T>) where T: HasAfEnum + RealNumber, { let cstr_param = match CString::new(filename) { Ok(cstr) => cstr, Err(_) => panic!("CString creation from input filename failed"), }; unsafe { let err_val = af_save_image(cstr_param.as_ptr(), input.get()); HANDLE_ERROR(AfError::from(err_val)); } } /// Save an Array without modifications to an image file /// /// This function only accepts U8, U16, F32 arrays. These arrays are saved to images without any modifications. You must also note that note all image type support 16 or 32 bit images. The best options for 16 bit images are PNG, PPM and TIFF. The best option for 32 bit images is TIFF. These allow lossless storage. /// /// The images stored have the following properties: /// /// Array Type | Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Range /// -------------|-----------------------------------------------|--------------- /// U8 | 8 ( 8/24/32 BPP) | 0 - 255 /// U16 | 16 (16/48/64 BPP) | 0 - 65535 /// F32 | 32 (32/96/128 BPP) | 0 - 1 /// /// # Parameters /// /// - `filename` is name of file to be saved /// - `input` is the Array to be saved. Should be U8 for saving 8-bit image, U16 for 16-bit image, and F32 for 32-bit image. #[allow(clippy::match_wild_err_arm)] pub fn save_image_native<T>(filename: String, input: &Array<T>) where T: HasAfEnum + ImageNativeType, { let cstr_param = match CString::new(filename) { Ok(cstr) => cstr, Err(_) => panic!("CString creation from input filename failed"), }; unsafe { let err_val = af_save_image_native(cstr_param.as_ptr(), input.get()); HANDLE_ERROR(AfError::from(err_val)); } } /// Resize an Image /// /// Resizing an input image can be done using either NEAREST or BILINEAR interpolations. /// Nearest interpolation will pick the nearest value to the location, whereas bilinear /// interpolation will do a weighted interpolation for calculate the new size. /// /// This function does not differentiate between images and data. As long as the array is defined /// and the output dimensions are not 0, it will resize any type or size of array. /// /// # Parameters /// /// - `input` is the image to be resized /// - `odim0` is the output height /// - `odim1` is the output width /// - `method` indicates which interpolation method to use for resizing. It uses enum /// [InterpType](./enum.InterpType.html) to identify the interpolation method. /// /// # Return Values /// /// Resized Array pub fn resize<T: HasAfEnum>( input: &Array<T>, odim0: i64, odim1: i64, method: InterpType, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_resize( &mut temp as *mut af_array, input.get(), odim0 as dim_t, odim1 as dim_t, method as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Transform(Affine) an Image /// /// The transform function uses an affine transform matrix to tranform an input image into a new /// one. The transform matrix tf is a 3x2 matrix of type float. The matrix operation is applied to each /// location (x, y) that is then transformed to (x', y') of the new array. Hence the transformation /// is an element-wise operation. /// /// The operation is as below: tf = [r00 r10 r01 r11 t0 t1] /// /// x' = x * r00 + y * r01 + t0; y' = x * r10 + y * r11 + t1; /// /// Interpolation types of NEAREST, LINEAR, BILINEAR and CUBIC are allowed. Affine transforms can be used for various purposes. [translate](./fn.translate.html), [scale](./fn.scale.html) and [skew](./fn.skew.html) are /// specializations of the transform function. /// /// This function can also handle batch operations. /// /// # Parameters /// /// - `input` is the image to be resized /// - `trans` is the transformation matrix to be used for image transformation /// - `odim0` is the output height /// - `odim1` is the output width /// - `method` indicates which interpolation method to use for resizing. It uses enum /// [InterpType](./enum.InterpType.html) to identify the interpolation method. /// - `is_inverse` indicates if to apply inverse/forward transform /// /// # Return Values /// /// Transformed Array pub fn transform<T: HasAfEnum>( input: &Array<T>, trans: &Array<f32>, odim0: i64, odim1: i64, method: InterpType, is_inverse: bool, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_transform( &mut temp as *mut af_array, input.get(), trans.get(), odim0 as dim_t, odim1 as dim_t, method as c_uint, is_inverse, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Rotate an Image /// /// Rotating an input image can be done using either NEAREST or BILINEAR interpolations. /// Nearest interpolation will pick the nearest value to the location, whereas bilinear /// interpolation will do a weighted interpolation for calculate the new size. /// /// This function does not differentiate between images and data. As long as the array is defined, /// it will rotate any type or size of array. /// /// The crop option allows you to choose whether to resize the image. If crop is set to false, ie. /// the entire rotated image will be a part of the array and the new array size will be greater /// than or equal to the input array size. If crop is set to true, then the new array size is same /// as the input array size and the data that falls outside the boundaries of the array is /// discarded. /// /// Any location of the rotated array that does not map to a location of the input array is set to /// 0. /// /// # Parameters /// /// - `input` is the input image /// - `theta` is the amount of angle (in radians) image should be rotated /// - `crop` indicates if the rotated image has to be cropped to original size /// - `method` indicates which interpolation method to use for rotating the image. It uses enum /// [InterpType](./enum.InterpType.html) to identify the interpolation method. /// /// # Return Values /// /// Rotated Array pub fn rotate<T: HasAfEnum>( input: &Array<T>, theta: f64, crop: bool, method: InterpType, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_rotate( &mut temp as *mut af_array, input.get(), theta as c_float, crop, method as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Translate an Image /// /// Translating an image is moving it along 1st and 2nd dimensions by trans0 and trans1. Positive /// values of these will move the data towards negative x and negative y whereas negative values of /// these will move the positive right and positive down. See the example below for more. /// /// To specify an output dimension, use the odim0 and odim1 for dim0 and dim1 respectively. The /// size of 2rd and 3rd dimension is same as input. If odim0 and odim1 and not defined, then the /// output dimensions are same as the input dimensions and the data out of bounds will be /// discarded. /// /// All new values that do not map to a location of the input array are set to 0. /// /// Translate is a special case of the [transform](./fn.transform.html) function. /// /// # Parameters /// /// - `input` is input image /// - `trans0` is amount by which the first dimension is translated /// - `trans1` is amount by which the second dimension is translated /// - `odim0` is the first output dimension /// - `odim1` is the second output dimension /// - `method` is the interpolation type (Nearest by default) /// /// # Return Values /// /// Translated Image(Array). pub fn translate<T: HasAfEnum>( input: &Array<T>, trans0: f32, trans1: f32, odim0: i64, odim1: i64, method: InterpType, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_translate( &mut temp as *mut af_array, input.get(), trans0, trans1, odim0 as dim_t, odim1 as dim_t, method as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Scale an Image /// /// Scale is the same functionality as [resize](./fn.resize.html) except that the scale function uses the transform kernels. The other difference is that scale does not set boundary values to be the boundary of the input array. Instead these are set to 0. /// /// Scale is a special case of the [transform](./fn.transform.html) function. /// /// # Parameters /// /// - `input` is input image /// - `trans0` is amount by which the first dimension is translated /// - `trans1` is amount by which the second dimension is translated /// - `odim0` is the first output dimension /// - `odim1` is the second output dimension /// - `method` is the interpolation type (Nearest by default) /// /// # Return Values /// /// Translated Image(Array). pub fn scale<T: HasAfEnum>( input: &Array<T>, scale0: f32, scale1: f32, odim0: i64, odim1: i64, method: InterpType, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_scale( &mut temp as *mut af_array, input.get(), scale0, scale1, odim0 as dim_t, odim1 as dim_t, method as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Skew an image /// /// Skew function skews the input array along dim0 by skew0 and along dim1 by skew1. The skew /// areguments are in radians. Skewing the data means the data remains parallel along 1 dimensions /// but the other dimensions gets moved along based on the angle. If both skew0 and skew1 are /// specified, then the data will be skewed along both directions. Explicit output dimensions /// can be specified using odim0 and odim1. All new values that do not map to a location of the input array are set to 0. /// /// Skew is a special case of the [transform](./fn.transform.html) function. /// /// # Parameters /// /// - `input` is the image to be skewed /// - `skew0` is the factor by which data is skewed along first dimension /// - `skew1` is the factor by which data is skewed along second dimension /// - `odim0` is the output length along first dimension /// - `odim1` is the output length along second dimension /// - `method` indicates which interpolation method to use for rotating the image. It uses enum /// [InterpType](./enum.InterpType.html) to identify the interpolation method. /// - `is_inverse` indicates if to apply inverse/forward transform /// /// # Return Values /// /// Skewed Image pub fn skew<T: HasAfEnum>( input: &Array<T>, skew0: f32, skew1: f32, odim0: i64, odim1: i64, method: InterpType, is_inverse: bool, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_skew( &mut temp as *mut af_array, input.get(), skew0, skew1, odim0 as dim_t, odim1 as dim_t, method as c_uint, is_inverse, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Compute Histogram of an Array /// /// A histogram is a representation of the distribution of given data. This representation is /// essentially a graph consisting of the data range or domain on one axis and frequency of /// occurence on the other axis. All the data in the domain is counted in the appropriate bin. The /// total number of elements belonging to each bin is known as the bin's frequency. /// /// The regular histogram function creates bins of equal size between the minimum and maximum of /// the input data (min and max are calculated internally). The histogram min-max function takes /// input parameters minimum and maximum, and divides the bins into equal sizes within the range /// specified by min and max parameters. All values less than min in the data range are placed in /// the first (min) bin and all values greater than max will be placed in the last (max) bin. /// /// # Parameters /// /// - `input` is the Array whose histogram has to be computed /// - `nbins` is the number bins the input data has to be categorized into. /// - `minval` is the minimum value of bin ordering /// - `maxval` is the maximum value of bin ordering /// /// # Return Values /// /// Histogram of input Array pub fn histogram<T>(input: &Array<T>, nbins: u32, minval: f64, maxval: f64) -> Array<u32> where T: HasAfEnum + RealNumber, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_histogram( &mut temp as *mut af_array, input.get(), nbins, minval, maxval, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Dilate an Image /// /// The dilation function takes two pieces of data as inputs. The first is the input image to be /// morphed, and the second is the mask indicating the neighborhood around each pixel to match. /// /// In dilation, for each pixel, the mask is centered at the pixel. If the center pixel of the mask /// matches the corresponding pixel on the image, then the mask is accepted. If the center pixels /// do not matches, then the mask is ignored and no changes are made. /// /// For further reference, see [here](https://en.wikipedia.org/wiki/Dilation_(morphology)). /// /// # Parameters /// /// - `input` is the input image /// - `mask` is the morphological operation mask /// /// # Return Values /// /// Dilated Image(Array) pub fn dilate<T>(input: &Array<T>, mask: &Array<T>) -> Array<T> where T: HasAfEnum + ImageFilterType, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_dilate(&mut temp as *mut af_array, input.get(), mask.get()); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Erode an Image /// /// The erosion function is a morphological transformation on an image that requires two inputs. /// The first is the image to be morphed, and the second is the mask indicating neighborhood that /// must be white in order to preserve each pixel. /// /// In erode, for each pixel, the mask is centered at the pixel. If each pixel of the mask matches /// the corresponding pixel on the image, then no change is made. If there is at least one /// mismatch, then pixels are changed to the background color (black). /// /// For further reference, see [here](https://en.wikipedia.org/wiki/Erosion_(morphology)). /// /// # Parameters /// /// - `input` is the input image /// - `mask` is the morphological operation mask /// /// # Return Values /// /// Eroded Image(Array) pub fn erode<T>(input: &Array<T>, mask: &Array<T>) -> Array<T> where T: HasAfEnum + ImageFilterType, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_erode(&mut temp as *mut af_array, input.get(), mask.get()); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Dilate a Volume /// /// Dilation for a volume is similar to the way dilation works on an image. Only difference is that /// the masking operation is performed on a volume instead of a rectangular region. /// /// # Parameters /// /// - `input` is the input volume /// - `mask` is the morphological operation mask /// /// # Return Values /// /// Dilated Volume(Array) pub fn dilate3<T>(input: &Array<T>, mask: &Array<T>) -> Array<T> where T: HasAfEnum + ImageFilterType, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_dilate3(&mut temp as *mut af_array, input.get(), mask.get()); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Erode a Volume /// /// Erosion for a volume is similar to the way erosion works on an image. Only difference is that /// the masking operation is performed on a volume instead of a rectangular region. /// /// # Parameters /// /// - `input` is the input volume /// - `mask` is the morphological operation mask /// /// # Return Values /// /// Eroded Volume(Array) pub fn erode3<T>(input: &Array<T>, mask: &Array<T>) -> Array<T> where T: HasAfEnum + ImageFilterType, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_erode3(&mut temp as *mut af_array, input.get(), mask.get()); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Bilateral Filter. /// /// A bilateral filter is a edge-preserving filter that reduces noise in an image. The intensity of /// each pixel is replaced by a weighted average of the intensities of nearby pixels. The weights /// follow a Gaussian distribution and depend on the distance as well as the color distance. /// /// The bilateral filter requires the size of the filter (in pixels) and the upper bound on color /// values, N, where pixel values range from 0–N inclusively. /// /// # Parameters /// /// - `input` array is the input image /// - `spatial_sigma` is the spatial variance parameter that decides the filter window /// - `chromatic_sigma` is the chromatic variance parameter /// - `iscolor` indicates if the input is color image or grayscale /// /// # Return Values /// /// Filtered Image - Array pub fn bilateral<T>( input: &Array<T>, spatial_sigma: f32, chromatic_sigma: f32, iscolor: bool, ) -> Array<T::AbsOutType> where T: HasAfEnum + ImageFilterType, T::AbsOutType: HasAfEnum, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_bilateral( &mut temp as *mut af_array, input.get(), spatial_sigma, chromatic_sigma, iscolor, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Meanshift Filter. /// /// A meanshift filter is an edge-preserving smoothing filter commonly used in object tracking and /// image segmentation. /// /// This filter replaces each pixel in the image with the mean of the values within a given given /// color and spatial radius. The meanshift filter is an iterative algorithm that continues until a /// maxium number of iterations is met or until the value of the means no longer changes. /// /// # Parameters /// /// - `input` array is the input image /// - `spatial_sigma` is the spatial variance parameter that decides the filter window /// - `chromatic_sigma` is the chromatic variance parameter /// - `iter` is the number of iterations filter operation is performed /// - `iscolor` indicates if the input is color image or grayscale /// /// # Return Values /// /// Filtered Image - Array pub fn mean_shift<T>( input: &Array<T>, spatial_sigma: f32, chromatic_sigma: f32, iter: u32, iscolor: bool, ) -> Array<T> where T: HasAfEnum + RealNumber, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_mean_shift( &mut temp as *mut af_array, input.get(), spatial_sigma, chromatic_sigma, iter, iscolor, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } macro_rules! filt_func_def { ($doc_str: expr, $fn_name: ident, $ffi_name: ident) => { #[doc=$doc_str] /// ///# Parameters /// /// - `input` is the input image(Array) /// - `wlen` is the horizontal length of the filter /// - `hlen` is the vertical length of the filter /// - `etype` is enum of type [BorderType](./enum.BorderType.html) /// ///# Return Values /// /// An Array with filtered image data. pub fn $fn_name<T>(input: &Array<T>, wlen: u64, wwid: u64, etype: BorderType) -> Array<T> where T: HasAfEnum + ImageFilterType, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = $ffi_name( &mut temp as *mut af_array, input.get(), wlen as dim_t, wwid as dim_t, etype as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } }; } filt_func_def!("Median filter", medfilt, af_medfilt); filt_func_def!( "Box filter with minimum as box operation", minfilt, af_minfilt ); filt_func_def!( "Box filter with maximum as box operation", maxfilt, af_maxfilt ); /// Creates a Gaussian Kernel. /// /// This function creates a kernel of a specified size that contains a Gaussian distribution. This /// distribution is normalized to one. This is most commonly used when performing a Gaussian blur /// on an image. The function takes two sets of arguments, the size of the kernel (width and height /// in pixels) and the sigma parameters (for row and column) which effect the distribution of the /// weights in the y and x directions, respectively. /// /// Changing sigma causes the weights in each direction to vary. Sigma is calculated internally as /// (0.25 * rows + 0.75) for rows and similarly for columns. /// /// # Parameters /// /// - `rows` is number of rows of kernel /// - `cols` is number of cols of kernel /// - `sigma_r` is standard deviation of rows /// - `sigma_c` is standard deviation of cols /// /// # Return Values /// /// An Array with gaussian kernel values pub fn gaussian_kernel(rows: i32, cols: i32, sigma_r: f64, sigma_c: f64) -> Array<f32> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_gaussian_kernel(&mut temp as *mut af_array, rows, cols, sigma_r, sigma_c); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Color space conversion /// /// Following are the supported conversions /// /// - RGB => GRAY /// - GRAY => RGB /// - RGB => HSV /// - HSV => RGB /// - YCbCr => RGB /// - RGB => YCbCr /// /// RGB (Red, Green, Blue) is the most common format used in computer imaging. RGB stores /// individual values for red, green and blue, and hence the 3 values per pixel. A combination of /// these three values produces the gamut of unique colors. /// /// HSV (Hue, Saturation, Value), also known as HSB (hue, saturation, brightness), is often used by /// artists because it is more natural to think about a color in terms of hue and saturation than /// in terms of additive or subtractive color components (as in RGB). HSV is a transformation of /// RGB colorspace; its components and colorimetry are relative to the RGB colorspace from which it /// was derived. Like RGB, HSV also uses 3 values per pixel. /// /// GRAY is a single channel color space where pixel value ranges from 0 to 1. Zero represents /// black, one represent white and any value between zero & one is a gray value /// /// # Parameters /// /// - `input` is the input image /// - `tospace` is the target color space. Takes values of [ColorSpace](./enum.ColorSpace.html) /// - `fromspace` is the source image color space. Takes values of /// [ColorSpace](./enum.ColorSpace.html) /// /// # Return Values /// /// An Array with input image values in target color space pub fn color_space<T>(input: &Array<T>, tospace: ColorSpace, fromspace: ColorSpace) -> Array<T> where T: HasAfEnum + RealNumber, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_color_space( &mut temp as *mut af_array, input.get(), tospace as c_uint, fromspace as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Find blobs in given image. /// /// Given a binary image (with zero representing background pixels), regions computes a floating /// point image where each connected component is labeled from 1 to N, the total number of /// components in the image. /// /// A component is defined as one or more nonzero pixels that are connected by the specified /// connectivity (either [`Connectivity::FOUR`](./enum.Connectivity.html) or [`Connectivity::EIGHT`](./enum.Connectivity.html)) in two dimensions. /// /// # Parameters /// /// - `input` is the input image /// - `conn` can take one of the values of [Connectivity](./enum.Connectivity.html) /// /// # Return Values /// /// Array with labels indicating different regions pub fn regions<OutType>(input: &Array<bool>, conn: Connectivity) -> Array<OutType> where OutType: HasAfEnum + RealNumber, { let otype = OutType::get_af_dtype(); unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_regions( &mut temp as *mut af_array, input.get(), conn as c_uint, otype as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Sobel Operator /// /// Sobel operators perform a 2-D spatial gradient measurement on an image to emphasize the regions /// of high spatial frequency, namely edges. A more in depth discussion on it can be found [here](https://en.wikipedia.org/wiki/Sobel_operator). /// /// # Parameters /// /// - `input` is the input image /// - `ker_size` is the kernel size of sobel operator /// /// # Return Values /// /// A tuple of Arrays. /// /// The first Array has derivatives along horizontal direction /// /// The second Array has derivatives along vertical direction pub fn sobel<T>(input: &Array<T>, ker_size: u32) -> (Array<T::SobelOutType>, Array<T::SobelOutType>) where T: HasAfEnum + ImageFilterType, T::SobelOutType: HasAfEnum, { unsafe { let mut dx: af_array = std::ptr::null_mut(); let mut dy: af_array = std::ptr::null_mut(); let err_val = af_sobel_operator( &mut dx as *mut af_array, &mut dy as *mut af_array, input.get(), ker_size, ); HANDLE_ERROR(AfError::from(err_val)); (dx.into(), dy.into()) } } /// Histogram Equalization /// /// # Parameters /// /// - `input` is the input Array to be equalized /// - `hist` is the Array to be used for equalizing input /// /// # Return Values /// Equalized Array pub fn hist_equal<T>(input: &Array<T>, hist: &Array<u32>) -> Array<T> where T: HasAfEnum + RealNumber, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_hist_equal(&mut temp as *mut af_array, input.get(), hist.get()); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } macro_rules! grayrgb_func_def { ($doc_str: expr, $fn_name: ident, $ffi_name: ident) => { #[doc=$doc_str] /// ///# Parameters /// /// - `r` is fraction of red channel to appear in output /// - `g` is fraction of green channel to appear in output /// - `b` is fraction of blue channel to appear in output /// ///#Return Values /// ///An Array with image data in target color space pub fn $fn_name<T>(input: &Array<T>, r: f32, g: f32, b: f32) -> Array<T> where T: HasAfEnum + GrayRGBConvertible, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = $ffi_name(&mut temp as *mut af_array, input.get(), r, g, b); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } }; } grayrgb_func_def!("Color(RGB) to Grayscale conversion", rgb2gray, af_rgb2gray); grayrgb_func_def!("Grayscale to Color(RGB) conversion", gray2rgb, af_gray2rgb); macro_rules! hsvrgb_func_def { ($doc_str: expr, $fn_name: ident, $ffi_name: ident) => { #[doc=$doc_str] pub fn $fn_name<T>(input: &Array<T>) -> Array<T> where T: HasAfEnum + RealFloating, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = $ffi_name(&mut temp as *mut af_array, input.get()); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } }; } hsvrgb_func_def!("HSV to RGB color space conversion", hsv2rgb, af_hsv2rgb); hsvrgb_func_def!("RGB to HSV color space conversion", rgb2hsv, af_rgb2hsv); /// Generate an array with image windows as columns /// /// unwrap takes in an input image along with the window sizes wx and wy, strides sx and sy, and /// padding px and py. This function then generates a matrix where each windows is an independent /// column. /// /// The number of columns (rows if is_column is true) in the output array are govenered by the /// number of windows that can be fit along x and y directions. Padding is applied along all 4 /// sides of the matrix with px defining the height of the padding along dim 0 and py defining the /// width of the padding along dim 1. /// /// The first column window is always at the top left corner of the input including padding. If a /// window cannot fit before the end of the matrix + padding, it is skipped from the generated /// matrix. /// /// Padding can take a maximum value of window - 1 repectively for x and y. /// /// For multiple channels (3rd and 4th dimension), the generated matrix contains the same number of /// channels as the input matrix. Each channel of the output matrix corresponds to the same channel /// of the input. /// /// # Parameters /// /// - `input` is the input image /// - `wx` is the block window size along 0th-dimension between \[1, input.dims\[0\] + px\] /// - `wy` is the block window size along 1st-dimension between \[1, input.dims\[1\] + py\] /// - `sx` is the stride along 0th-dimension /// - `sy` is the stride along 1st-dimension /// - `px` is the padding along 0th-dimension between [0, wx). Padding is applied both before and after. /// - `py` is the padding along 1st-dimension between [0, wy). Padding is applied both before and after. /// - `is_column` specifies the layout for the unwrapped patch. If is_column is false, the unrapped patch is laid out as a row. /// /// # Return Values /// /// An Array with image windows as columns /// /// # Examples /// /// ```text /// A [5 5 1 1] /// 10 15 20 25 30 /// 11 16 21 26 31 /// 12 17 22 27 32 /// 13 18 23 28 33 /// 14 19 24 29 34 /// /// // Window 3x3, strides 1x1, padding 0x0 /// unwrap(A, 3, 3, 1, 1, 0, 0, False) [9 9 1 1] /// 10 11 12 15 16 17 20 21 22 /// 11 12 13 16 17 18 21 22 23 /// 12 13 14 17 18 19 22 23 24 /// 15 16 17 20 21 22 25 26 27 /// 16 17 18 21 22 23 26 27 28 /// 17 18 19 22 23 24 27 28 29 /// 20 21 22 25 26 27 30 31 32 /// 21 22 23 26 27 28 31 32 33 /// 22 23 24 27 28 29 32 33 34 /// /// // Window 3x3, strides 1x1, padding 1x1 /// unwrap(A, 3, 3, 1, 1, 1, 1, False) [9 25 1 1] /// 0 0 0 0 0 0 10 11 12 13 0 15 16 17 18 0 20 21 22 23 0 25 26 27 28 /// 0 0 0 0 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 /// 0 0 0 0 0 11 12 13 14 0 16 17 18 19 0 21 22 23 24 0 26 27 28 29 0 /// 0 10 11 12 13 0 15 16 17 18 0 20 21 22 23 0 25 26 27 28 0 30 31 32 33 /// 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 /// 11 12 13 14 0 16 17 18 19 0 21 22 23 24 0 26 27 28 29 0 31 32 33 34 0 /// 0 15 16 17 18 0 20 21 22 23 0 25 26 27 28 0 30 31 32 33 0 0 0 0 0 /// 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 0 0 0 0 0 /// 16 17 18 19 0 21 22 23 24 0 26 27 28 29 0 31 32 33 34 0 0 0 0 0 0 /// ``` #[allow(clippy::too_many_arguments)] pub fn unwrap<T: HasAfEnum>( input: &Array<T>, wx: i64, wy: i64, sx: i64, sy: i64, px: i64, py: i64, is_column: bool, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_unwrap( &mut temp as *mut af_array, input.get(), wx, wy, sx, sy, px, py, is_column, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Converts unwrapped image to an image /// /// Wrap takes an unwrapped image (see unwrap()) and converts it back to an image. /// /// The inputs to this function should be the same as the inputs used to generate the unwrapped /// image. /// /// # Parameters /// /// - `input` is the output of unwrap function call /// - `ox` is the 0th-dimension of output image /// - `oy` is the 1st-dimension of output image /// - `wx` is the block window size along 0th-dimension between /// - `wy` is the block window size along 1st-dimension between /// - `sx` is the stride along 0th-dimension /// - `sy` is the stride along 1st-dimension /// - `px` is the padding used along 0th-dimension between [0, wx). /// - `py` is the padding used along 1st-dimension between [0, wy). /// - `is_column` specifies the layout for the unwrapped patch. If is_column is false, the rows are treated as the patches /// /// # Return Values /// /// Image(Array) created from unwrapped Image(Array) #[allow(clippy::too_many_arguments)] pub fn wrap<T: HasAfEnum>( input: &Array<T>, ox: i64, oy: i64, wx: i64, wy: i64, sx: i64, sy: i64, px: i64, py: i64, is_column: bool, ) -> Array<T> { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_wrap( &mut temp as *mut af_array, input.get(), ox, oy, wx, wy, sx, sy, px, py, is_column, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Summed area table of an Image /// /// # Parameters /// /// - `input` is the input image /// /// # Return Values /// /// Summed area table (a.k.a Integral Image) of the input image. pub fn sat<T>(input: &Array<T>) -> Array<T::AggregateOutType> where T: HasAfEnum + RealNumber, T::AggregateOutType: HasAfEnum, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_sat(&mut temp as *mut af_array, input.get()); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// RGB to YCbCr colorspace converter. /// /// RGB (Red, Green, Blue) is the most common format used in computer imaging. RGB stores /// individual values for red, green and blue, and hence the 3 values per pixel. A combination of /// these three values produces the gamut of unique colors. /// /// YCbCr is a family of color spaces used as a part of the color image pipeline in video and /// digital photography systems where Y is luma component and Cb & Cr are the blue-difference and /// red-difference chroma components. /// /// Input array to this function should be of real data in the range [0,1]. /// /// # Parameters /// /// - `input` is the input image in RGB color space /// - `standard` is the target color space - [YCbCr standard](./enum.YCCStd.html) /// /// # Return Values /// /// Image(Array) in YCbCr color space pub fn rgb2ycbcr<T>(input: &Array<T>, standard: YCCStd) -> Array<T> where T: HasAfEnum + RealFloating, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_rgb2ycbcr(&mut temp as *mut af_array, input.get(), standard as c_uint); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// YCbCr to RGB colorspace converter. /// /// YCbCr is a family of color spaces used as a part of the color image pipeline in video and /// digital photography systems where Y is luma component and Cb & Cr are the blue-difference and /// red-difference chroma components. /// /// RGB (Red, Green, Blue) is the most common format used in computer imaging. RGB stores /// individual values for red, green and blue, and hence the 3 values per pixel. A combination of /// these three values produces the gamut of unique colors. /// /// Input array to this function should be of real data with the following range in their /// respective channels. /// /// - Y −> [16,219] /// - Cb −> [16,240] /// - Cr −> [16,240] /// /// # Parameters /// /// - `input` is the input image in YCbCr color space /// - `standard` is the [YCbCr standard](./enum.YCCStd.html) in which input image color space is /// present. /// /// # Return Values /// /// Image(Array) in RGB color space pub fn ycbcr2rgb<T>(input: &Array<T>, standard: YCCStd) -> Array<T> where T: HasAfEnum + RealFloating, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_ycbcr2rgb(&mut temp as *mut af_array, input.get(), standard as c_uint); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Function to check if Image I/O is available /// /// # Parameters /// /// None /// /// # Return Values /// /// Return a boolean indicating if ArrayFire was compiled with Image I/O support pub fn is_imageio_available() -> bool { let mut temp: bool = false; unsafe { af_is_image_io_available(&mut temp as *mut bool); } temp } /// Transform input coordinates /// /// The transform function uses a perspective transform matrix to transform input coordinates /// (given as two dimensions) into a coordinates matrix. /// /// The output is a 4x2 matrix, indicating the coordinates of the 4 bidimensional transformed /// points. /// /// # Parameters /// /// - `tf` is the transformation matrix /// - `d0` is the first input dimension /// - `d1` is the second input dimension /// /// # Return Values /// /// Transformed coordinates pub fn transform_coords<T>(tf: &Array<T>, d0: f32, d1: f32) -> Array<T> where T: HasAfEnum + RealFloating, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_transform_coordinates(&mut temp as *mut af_array, tf.get(), d0, d1); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Find Image moments /// /// # Parameters /// /// - `input` is the input image /// - `moment` is the type of moment to be computed, takes a value of /// [enum](./enum.MomentType.html) /// /// # Return Values /// /// Moments Array pub fn moments<T>(input: &Array<T>, moment: MomentType) -> Array<f32> where T: HasAfEnum + MomentsComputable, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_moments(&mut temp as *mut af_array, input.get(), moment as c_uint); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Find Image moment for whole image /// /// # Parameters /// /// - `input` is the input image /// - `moment` is the type of moment to be computed, takes a value of /// [enum](./enum.MomentType.html) /// /// # Return Values /// /// Moment value of the whole image pub fn moments_all<T>(input: &Array<T>, moment: MomentType) -> f64 where T: HasAfEnum + MomentsComputable, { let mut temp: f64 = 0.0; unsafe { let err_val = af_moments_all(&mut temp as *mut c_double, input.get(), moment as c_uint); HANDLE_ERROR(AfError::from(err_val)); } temp } /// One dimensional median filter on image /// /// # Parameters /// /// - `input` is the input image(Array) /// - `wlen` is the horizontal length of the filter /// - `etype` is enum of type [BorderType](./enum.BorderType.html) /// /// # Return Values /// /// An Array with filtered image data. pub fn medfilt1<T>(input: &Array<T>, wlen: u64, etype: BorderType) -> Array<T> where T: HasAfEnum + ImageFilterType, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_medfilt1( &mut temp as *mut af_array, input.get(), wlen as dim_t, etype as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Canny edge detection operator /// /// The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images. A more in depth discussion on it can be found [here](https://en.wikipedia.org/wiki/Canny_edge_detector). /// /// # Parameters /// /// - `input` is the input image /// - `threshold_type` helps determine if user set high threshold is to be used or not. It can take values defined by the enum [CannyThresholdType](./enum.CannyThresholdType.html) /// - `low` is the lower threshold % of the maximum or auto-derived high /// - `high` is the higher threshold % of maximum value in gradient image used in hysteresis procedure. This value is ignored if [CannyThresholdType::OTSU](./enum.CannyThresholdType.html) is chosen. /// - `sobel_window` is the window size of sobel kernel for computing gradient direction and magnitude. /// - `is_fast` indicates if L<SUB>1</SUB> norm(faster but less accurate) is used to compute image gradient magnitude instead of L<SUB>2</SUB> norm. /// /// # Return Values /// /// An Array of binary type [DType::B8](./enum.DType.html) indicating edges(All pixels with /// non-zero values are edges). pub fn canny<T>( input: &Array<T>, threshold_type: CannyThresholdType, low: f32, high: f32, sobel_window: u32, is_fast: bool, ) -> Array<bool> where T: HasAfEnum + EdgeComputable, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_canny( &mut temp as *mut af_array, input.get(), threshold_type as c_int, low, high, sobel_window as c_uint, is_fast, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Anisotropic smoothing filter /// /// Anisotropic diffusion algorithm aims at removing noise in the images /// while preserving important features such as edges. The algorithm /// essentially creates a scale space representation of the original /// image, where image from previous step is used to create a new version /// of blurred image using the diffusion process. Standard isotropic diffusion /// methods such as gaussian blur, doesn't take into account the local /// content(smaller neighborhood of current processing pixel) while removing /// noise. Anisotropic diffusion uses the flux equations given below to /// achieve that. Flux equation is the formula used by the diffusion process /// to determine how much a pixel in neighborhood should contribute to /// the blurring operation being done at the current pixel at a given iteration. /// /// The flux function can be either exponential or quadratic. /// /// <table> /// <caption id="multi row">Available Flux Functions</caption> /// <tr> /// <td align="center" style="vertical-align:middle;"> /// AF_FLUX_QUADRATIC /// </td> /// <td align="center"> /// \begin{equation} /// \frac{1}{1 + (\frac{\| \nabla I\|}{K})^2} /// \end{equation} /// </td> /// </tr> /// <tr> /// <td align="center" style="vertical-align:middle;"> /// AF_FLUX_EXPONENTIAL /// </td> /// <td align="center"> /// \begin{equation} /// \exp{-(\frac{\| \nabla I\|}{K})^2} /// \end{equation} /// </td> /// </tr> /// </table> /// /// Please be cautious using the time step parameter to the function. /// Appropriate time steps for solving this type of p.d.e. depend on /// the dimensionality of the image and the order of the equation. /// Stable values for most 2D and 3D functions are 0.125 and 0.0625, /// respectively. The time step values are automatically constrained /// to the stable value. /// /// Another input parameter to be cautious about is the conductance /// parameter, lower values strongly preserve image features and /// vice-versa. For human vision, this value ranges from 0.5 to 2.0. /// /// # Parameters /// /// - `img` is the noisy input image /// - `dt` is the timestep for diffusion equation /// - `k` is the conductance parameter for diffusion /// - `iters` is the number of iterations diffusion is performed /// - `fftype` dictates the type of flux flow and it is an /// [enum](./enum.DiffusionEq.html) /// - `diff_kind` dictates the type of diffusion and it is an /// [enum](./enum.FluxFn.html) /// /// # Return Values /// /// Returns an anisotropically smoothed and noise-free image /// /// ### References /// /// - Pietro Perona and Jitendra Malik, `Scale-space and edge detection /// using anisotropic diffusion,` IEEE Transactions on Pattern Analysis /// Machine Intelligence, vol. 12, pp. 629-639, 1990. /// - R. Whitaker and X. Xue. `Variable-Conductance, Level-Set Curvature /// for Image Denoising`, International Conference on Image Processing, /// 2001 pp. 142-145, Vol.3. pub fn anisotropic_diffusion<T>( img: &Array<T>, dt: f32, k: f32, iters: u32, fftype: FluxFn, diff_kind: DiffusionEq, ) -> Array<T::AbsOutType> where T: HasAfEnum + EdgeComputable, T::AbsOutType: HasAfEnum, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_anisotropic_diffusion( &mut temp as *mut af_array, img.get(), dt, k, iters, fftype as c_uint, diff_kind as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Segment image based on similar pixel characteristics /// /// This filter is similar to [regions](./fn.regions.html) with additional criteria for /// segmentation. In regions, all connected pixels are considered to be a single component. /// In this variation of connected components, pixels having similar pixel statistics of the /// neighborhoods around a given set of seed points are grouped together. /// /// The parameter `radius` determines the size of neighborhood around a seed point. /// /// Mean and Variance are the pixel statistics that are computed across all neighborhoods around /// the given set of seed points. The pixels which are connected to seed points and lie in the /// confidence interval are grouped together. Given below is the confidence interval. /// /// \begin{equation} /// [\mu - \alpha * \sigma, \mu + \alpha * \sigma] /// \end{equation} /// where /// /// - $ \mu $ is the mean of the pixels in the seed neighborhood /// - $ \sigma^2 $ is the variance of the pixels in the seed neighborhood /// - $ \alpha $ is the multiplier used to control the width of the confidence interval. /// /// This filter follows an iterative approach for fine tuning the segmentation. An initial /// segmenetation followed by a finite number `iterations` of segmentations are performed. /// The user provided parameter `iterations` is only a request and the algorithm can prempt /// the execution if variance approaches zero. The initial segmentation uses the mean and /// variance calculated from the neighborhoods of all the seed points. For subsequent /// segmentations, all pixels in the previous segmentation are used to re-calculate the mean /// and variance (as opposed to using the pixels in the neighborhood of the seed point). /// /// # Parameters /// /// - `input` is the input image /// - `seedx` contains the x coordinates of seeds in image coordinates /// - `seedy` contains the y coordinates of seeds in image coordinates /// - `radius` is the neighborhood region to be considered around each seed point /// - `multiplier` controls the threshold range computed from the mean and variance of seed point neighborhoods /// - `iterations` is the number of times the segmentation in performed /// - `segmented_value` is the value to which output array valid pixels are set to /// /// # Return Values /// /// Segmented(based on pixel characteristics) image(Array) with regions surrounding the seed points pub fn confidence_cc<InOutType>( input: &Array<InOutType>, seedx: &Array<u32>, seedy: &Array<u32>, radius: u32, multiplier: u32, iterations: u32, segmented_val: f64, ) -> Array<InOutType> where InOutType: ConfidenceCCInput, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_confidence_cc( &mut temp as *mut af_array, input.get(), seedx.get(), seedy.get(), radius, multiplier, iterations as i32, segmented_val, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Iterative Deconvolution /// /// The following table shows the iteration update equations of the respective /// deconvolution algorithms. /// /// <table> /// <tr><th>Algorithm</th><th>Update Equation</th></tr> /// <tr> /// <td>LandWeber</td> /// <td> /// $ \hat{I}_{n} = \hat{I}_{n-1} + \alpha * P^T \otimes (I - P \otimes \hat{I}_{n-1}) $ /// </td> /// </tr> /// <tr> /// <td>Richardson-Lucy</td> /// <td> /// $ \hat{I}_{n} = \hat{I}_{n-1} . ( \frac{I}{\hat{I}_{n-1} \otimes P} \otimes P^T ) $ /// </td> /// </tr> /// </table> /// /// where /// /// - $ I $ is the observed(input/blurred) image /// - $ P $ is the point spread function /// - $ P^T $ is the transpose of point spread function /// - $ \hat{I}_{n} $ is the current iteration's updated image estimate /// - $ \hat{I}_{n-1} $ is the previous iteration's image estimate /// - $ \alpha $ is the relaxation factor /// - $ \otimes $ indicates the convolution operator /// /// The type of output Array from deconvolution will be of type f64 if /// the input array type is f64. For other types, output type will be f32 type. /// Should the caller want to save the image to disk or require the values of output /// to be in a fixed range, that should be done by the caller explicitly. pub fn iterative_deconv<T>( input: &Array<T>, kernel: &Array<f32>, iterations: u32, relaxation_factor: f32, algo: IterativeDeconvAlgo, ) -> Array<T::AbsOutType> where T: DeconvInput, T::AbsOutType: HasAfEnum, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_iterative_deconv( &mut temp as *mut af_array, input.get(), kernel.get(), iterations, relaxation_factor, algo as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } } /// Inverse deconvolution /// /// This is a linear algorithm i.e. they are non-iterative in /// nature and usually faster than iterative deconvolution algorithms. /// /// Depending on the values passed on to `algo` of type enum [InverseDeconvAlgo](./enum.inverse_deconv_algo.html), /// different equations are used to compute the final result. /// /// #### Tikhonov's Deconvolution Method: /// /// The update equation for this algorithm is as follows: /// /// <div> /// \begin{equation} /// \hat{I}_{\omega} = \frac{ I_{\omega} * P^{*}_{\omega} } { |P_{\omega}|^2 + \gamma } /// \end{equation} /// </div> /// /// where /// /// - $ I_{\omega} $ is the observed(input/blurred) image in frequency domain /// - $ P_{\omega} $ is the point spread function in frequency domain /// - $ \gamma $ is a user defined regularization constant /// /// The type of output Array from deconvolution will be double if the input array type is double. /// Otherwise, it will be float in rest of the cases. Should the caller want to save the image to /// disk or require the values of output to be in a fixed range, that should be done by the caller /// explicitly. pub fn inverse_deconv<T>( input: &Array<T>, kernel: &Array<f32>, gamma: f32, algo: InverseDeconvAlgo, ) -> Array<T::AbsOutType> where T: DeconvInput, T::AbsOutType: HasAfEnum, { unsafe { let mut temp: af_array = std::ptr::null_mut(); let err_val = af_inverse_deconv( &mut temp as *mut af_array, input.get(), kernel.get(), gamma, algo as c_uint, ); HANDLE_ERROR(AfError::from(err_val)); temp.into() } }