1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
use super::core::{
    af_array, dim_t, AfError, Array, BorderType, CannyThresholdType, ColorSpace, ConfidenceCCInput,
    Connectivity, DeconvInput, DiffusionEq, EdgeComputable, FloatingPoint, FluxFn,
    GrayRGBConvertible, HasAfEnum, ImageFilterType, ImageNativeType, InterpType, InverseDeconvAlgo,
    IterativeDeconvAlgo, MomentType, MomentsComputable, RealFloating, RealNumber, YCCStd,
    HANDLE_ERROR,
};

use libc::{c_char, c_double, c_float, c_int, c_uint};
use std::ffi::CString;

// unused functions from image.h header
// TODO add later when requested
// af_load_image_memory
// af_save_image_memory
// af_delete_image_memory

extern "C" {
    fn af_cast(out: *mut af_array, arr: af_array, aftype: c_uint) -> c_int;
    fn af_gradient(dx: *mut af_array, dy: *mut af_array, arr: af_array) -> c_int;
    fn af_load_image(out: *mut af_array, filename: *const c_char, iscolor: bool) -> c_int;
    fn af_save_image(filename: *const c_char, input: af_array) -> c_int;
    fn af_load_image_native(out: *mut af_array, filename: *const c_char) -> c_int;
    fn af_save_image_native(filename: *const c_char, input: af_array) -> c_int;

    fn af_resize(
        out: *mut af_array,
        input: af_array,
        odim0: dim_t,
        odim1: dim_t,
        method: c_uint,
    ) -> c_int;

    fn af_transform(
        out: *mut af_array,
        input: af_array,
        trans: af_array,
        odim0: dim_t,
        odim1: dim_t,
        method: c_uint,
        is_inverse: bool,
    ) -> c_int;

    fn af_rotate(
        out: *mut af_array,
        input: af_array,
        theta: c_float,
        crop: bool,
        method: c_uint,
    ) -> c_int;

    fn af_translate(
        out: *mut af_array,
        input: af_array,
        trans0: c_float,
        trans1: c_float,
        odim0: dim_t,
        odim1: dim_t,
        method: c_uint,
    ) -> c_int;

    fn af_scale(
        out: *mut af_array,
        input: af_array,
        scale0: c_float,
        scale1: c_float,
        odim0: dim_t,
        odim1: dim_t,
        method: c_uint,
    ) -> c_int;

    fn af_skew(
        out: *mut af_array,
        input: af_array,
        skew0: c_float,
        skew1: c_float,
        odim0: dim_t,
        odim1: dim_t,
        method: c_uint,
        is_inverse: bool,
    ) -> c_int;

    fn af_histogram(
        out: *mut af_array,
        input: af_array,
        nbins: c_uint,
        minval: c_double,
        maxval: c_double,
    ) -> c_int;

    fn af_dilate(out: *mut af_array, input: af_array, mask: af_array) -> c_int;
    fn af_dilate3(out: *mut af_array, input: af_array, mask: af_array) -> c_int;
    fn af_erode(out: *mut af_array, input: af_array, mask: af_array) -> c_int;
    fn af_erode3(out: *mut af_array, input: af_array, mask: af_array) -> c_int;
    fn af_regions(out: *mut af_array, input: af_array, conn: c_uint, aftype: c_uint) -> c_int;
    fn af_sobel_operator(dx: *mut af_array, dy: *mut af_array, i: af_array, ksize: c_uint)
        -> c_int;
    fn af_rgb2gray(
        out: *mut af_array,
        input: af_array,
        r: c_float,
        g: c_float,
        b: c_float,
    ) -> c_int;
    fn af_gray2rgb(
        out: *mut af_array,
        input: af_array,
        r: c_float,
        g: c_float,
        b: c_float,
    ) -> c_int;
    fn af_hist_equal(out: *mut af_array, input: af_array, hist: af_array) -> c_int;
    fn af_hsv2rgb(out: *mut af_array, input: af_array) -> c_int;
    fn af_rgb2hsv(out: *mut af_array, input: af_array) -> c_int;

    fn af_bilateral(
        out: *mut af_array,
        input: af_array,
        sp_sig: c_float,
        ch_sig: c_float,
        iscolor: bool,
    ) -> c_int;

    fn af_mean_shift(
        out: *mut af_array,
        input: af_array,
        sp_sig: c_float,
        ch_sig: c_float,
        iter: c_uint,
        iscolor: bool,
    ) -> c_int;

    fn af_medfilt(
        out: *mut af_array,
        input: af_array,
        wlen: dim_t,
        wwid: dim_t,
        etype: c_uint,
    ) -> c_int;

    fn af_medfilt1(out: *mut af_array, input: af_array, wlen: dim_t, etype: c_uint) -> c_int;

    fn af_minfilt(
        out: *mut af_array,
        input: af_array,
        wlen: dim_t,
        wwid: dim_t,
        etype: c_uint,
    ) -> c_int;

    fn af_maxfilt(
        out: *mut af_array,
        input: af_array,
        wlen: dim_t,
        wwid: dim_t,
        etype: c_uint,
    ) -> c_int;

    fn af_gaussian_kernel(
        out: *mut af_array,
        rows: c_int,
        cols: c_int,
        sigma_r: c_double,
        sigma_c: c_double,
    ) -> c_int;

    fn af_color_space(
        out: *mut af_array,
        input: af_array,
        tospace: c_uint,
        fromspace: c_uint,
    ) -> c_int;

    fn af_unwrap(
        out: *mut af_array,
        input: af_array,
        wx: dim_t,
        wy: dim_t,
        sx: dim_t,
        sy: dim_t,
        px: dim_t,
        py: dim_t,
        is_column: bool,
    ) -> c_int;

    fn af_wrap(
        out: *mut af_array,
        input: af_array,
        ox: dim_t,
        oy: dim_t,
        wx: dim_t,
        wy: dim_t,
        sx: dim_t,
        sy: dim_t,
        px: dim_t,
        py: dim_t,
        is_column: bool,
    ) -> c_int;

    fn af_sat(out: *mut af_array, input: af_array) -> c_int;

    fn af_ycbcr2rgb(out: *mut af_array, input: af_array, stnd: c_uint) -> c_int;
    fn af_rgb2ycbcr(out: *mut af_array, input: af_array, stnd: c_uint) -> c_int;
    fn af_is_image_io_available(out: *mut bool) -> c_int;
    fn af_transform_coordinates(
        out: *mut af_array,
        tf: af_array,
        d0: c_float,
        d1: c_float,
    ) -> c_int;

    fn af_moments(out: *mut af_array, input: af_array, moment: c_uint) -> c_int;
    fn af_moments_all(out: *mut c_double, input: af_array, moment: c_uint) -> c_int;

    fn af_canny(
        out: *mut af_array,
        input: af_array,
        thres_type: c_int,
        low: c_float,
        high: c_float,
        swindow: c_uint,
        is_fast: bool,
    ) -> c_int;
    fn af_anisotropic_diffusion(
        out: *mut af_array,
        input: af_array,
        dt: c_float,
        K: c_float,
        iters: c_uint,
        fftype: c_uint,
        diff_kind: c_uint,
    ) -> c_int;
    fn af_confidence_cc(
        out: *mut af_array,
        input: af_array,
        seedx: af_array,
        seedy: af_array,
        radius: c_uint,
        multiplier: c_uint,
        iterations: c_int,
        seg_val: c_double,
    ) -> c_int;
    fn af_iterative_deconv(
        out: *mut af_array,
        input: af_array,
        ker: af_array,
        iterations: c_uint,
        rfactor: c_float,
        algo: c_uint,
    ) -> c_int;
    fn af_inverse_deconv(
        out: *mut af_array,
        input: af_array,
        ker: af_array,
        gamma: c_float,
        algo: c_uint,
    ) -> c_int;
}

/// Calculate the gradients
///
/// The gradients along the first and second dimensions are calculated simultaneously.
///
/// # Parameters
///
/// - `input` is the input Array
///
/// # Return Values
///
/// A tuple of Arrays.
///
/// The first Array is `dx` which is the gradient along the 1st dimension.
///
/// The second Array is `dy` which is the gradient along the 2nd dimension.
pub fn gradient<T>(input: &Array<T>) -> (Array<T>, Array<T>)
where
    T: HasAfEnum + FloatingPoint,
{
    unsafe {
        let mut dx: af_array = std::ptr::null_mut();
        let mut dy: af_array = std::ptr::null_mut();
        let err_val = af_gradient(
            &mut dx as *mut af_array,
            &mut dy as *mut af_array,
            input.get(),
        );
        HANDLE_ERROR(AfError::from(err_val));
        (dx.into(), dy.into())
    }
}

/// Load Image into Array
///
/// Only, Images with 8/16/32 bits per channel can be loaded using this function.
///
/// # Parameters
///
/// - `filename` is aboslute path of the image to be loaded.
/// - `is_color` indicates if the image file at given path is color or gray scale.
///
/// # Return Arrays
///
/// An Array with pixel values loaded from the image
#[allow(clippy::match_wild_err_arm)]
pub fn load_image<T>(filename: String, is_color: bool) -> Array<T>
where
    T: HasAfEnum + RealNumber,
{
    let cstr_param = match CString::new(filename) {
        Ok(cstr) => cstr,
        Err(_) => panic!("CString creation from input filename failed"),
    };
    let trgt_type = T::get_af_dtype();
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err1 = af_load_image(&mut temp as *mut af_array, cstr_param.as_ptr(), is_color);
        HANDLE_ERROR(AfError::from(err1));

        let mut img: af_array = std::ptr::null_mut();
        let err2 = af_cast(&mut img as *mut af_array, temp, trgt_type as c_uint);
        HANDLE_ERROR(AfError::from(err2));

        img.into()
    }
}

/// Load Image into Array in it's native type
///
/// This load image function allows you to load images as U8, U16 or F32
/// depending on the type of input image as shown by the table below.
///
///  Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Array Type  | Range
/// -----------------------------------------------|-------------|---------------
///   8 ( 8/24/32  BPP)                            | u8          | 0 - 255
///  16 (16/48/64  BPP)                            | u16         | 0 - 65535
///  32 (32/96/128 BPP)                            | f32         | 0 - 1
///
/// # Parameters
///
/// - `filename` is name of file to be loaded
///
/// # Return Arrays
///
/// An Array with pixel values loaded from the image
#[allow(clippy::match_wild_err_arm)]
pub fn load_image_native<T>(filename: String) -> Array<T>
where
    T: HasAfEnum + ImageNativeType,
{
    let cstr_param = match CString::new(filename) {
        Ok(cstr) => cstr,
        Err(_) => panic!("CString creation from input filename failed"),
    };
    let trgt_type = T::get_af_dtype();
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err1 = af_load_image_native(&mut temp as *mut af_array, cstr_param.as_ptr());
        HANDLE_ERROR(AfError::from(err1));

        let mut img: af_array = std::ptr::null_mut();
        let err2 = af_cast(&mut img as *mut af_array, temp, trgt_type as c_uint);
        HANDLE_ERROR(AfError::from(err2));

        img.into()
    }
}

/// Save an Array to an image file
///
/// # Parameters
///
/// - `filename` is the abolute path(includes filename) at which input Array is going to be saved
/// - `input` is the Array to be stored into the image file
#[allow(clippy::match_wild_err_arm)]
pub fn save_image<T>(filename: String, input: &Array<T>)
where
    T: HasAfEnum + RealNumber,
{
    let cstr_param = match CString::new(filename) {
        Ok(cstr) => cstr,
        Err(_) => panic!("CString creation from input filename failed"),
    };
    unsafe {
        let err_val = af_save_image(cstr_param.as_ptr(), input.get());
        HANDLE_ERROR(AfError::from(err_val));
    }
}

/// Save an Array without modifications to an image file
///
/// This function only accepts U8, U16, F32 arrays. These arrays are saved to images without any modifications. You must also note that note all image type support 16 or 32 bit images. The best options for 16 bit images are PNG, PPM and TIFF. The best option for 32 bit images is TIFF. These allow lossless storage.
///
/// The images stored have the following properties:
///
///  Array Type  | Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Range
/// -------------|-----------------------------------------------|---------------
///  U8          |  8 ( 8/24/32  BPP)                            | 0 - 255
///  U16         | 16 (16/48/64  BPP)                            | 0 - 65535
///  F32         | 32 (32/96/128 BPP)                            | 0 - 1
///
/// # Parameters
///
/// - `filename` is name of file to be saved
/// - `input` is the Array to be saved. Should be U8 for saving 8-bit image, U16 for 16-bit image, and F32 for 32-bit image.
#[allow(clippy::match_wild_err_arm)]
pub fn save_image_native<T>(filename: String, input: &Array<T>)
where
    T: HasAfEnum + ImageNativeType,
{
    let cstr_param = match CString::new(filename) {
        Ok(cstr) => cstr,
        Err(_) => panic!("CString creation from input filename failed"),
    };
    unsafe {
        let err_val = af_save_image_native(cstr_param.as_ptr(), input.get());
        HANDLE_ERROR(AfError::from(err_val));
    }
}

/// Resize an Image
///
/// Resizing an input image can be done using either NEAREST or BILINEAR interpolations.
/// Nearest interpolation will pick the nearest value to the location, whereas bilinear
/// interpolation will do a weighted interpolation for calculate the new size.
///
/// This function does not differentiate between images and data. As long as the array is defined
/// and the output dimensions are not 0, it will resize any type or size of array.
///
/// # Parameters
///
/// - `input` is the image to be resized
/// - `odim0` is the output height
/// - `odim1` is the output width
/// - `method` indicates which interpolation method to use for resizing. It uses enum
/// [InterpType](./enum.InterpType.html) to identify the interpolation method.
///
/// # Return Values
///
/// Resized Array
pub fn resize<T: HasAfEnum>(
    input: &Array<T>,
    odim0: i64,
    odim1: i64,
    method: InterpType,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_resize(
            &mut temp as *mut af_array,
            input.get(),
            odim0 as dim_t,
            odim1 as dim_t,
            method as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Transform(Affine) an Image
///
/// The transform function uses an affine transform matrix to tranform an input image into a new
/// one. The transform matrix tf is a 3x2 matrix of type float. The matrix operation is applied to each
/// location (x, y) that is then transformed to (x', y') of the new array. Hence the transformation
/// is an element-wise operation.
///
/// The operation is as below: tf = [r00 r10 r01 r11 t0 t1]
///
/// x' = x * r00 + y * r01 + t0; y' = x * r10 + y * r11 + t1;
///
/// Interpolation types of NEAREST, LINEAR, BILINEAR and CUBIC are allowed. Affine transforms can be used for various purposes. [translate](./fn.translate.html), [scale](./fn.scale.html) and [skew](./fn.skew.html) are
/// specializations of the transform function.
///
/// This function can also handle batch operations.
///
/// # Parameters
///
/// - `input` is the image to be resized
/// - `trans` is the transformation matrix to be used for image transformation
/// - `odim0` is the output height
/// - `odim1` is the output width
/// - `method` indicates which interpolation method to use for resizing. It uses enum
/// [InterpType](./enum.InterpType.html) to identify the interpolation method.
/// - `is_inverse` indicates if to apply inverse/forward transform
///
/// # Return Values
///
/// Transformed Array
pub fn transform<T: HasAfEnum>(
    input: &Array<T>,
    trans: &Array<f32>,
    odim0: i64,
    odim1: i64,
    method: InterpType,
    is_inverse: bool,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_transform(
            &mut temp as *mut af_array,
            input.get(),
            trans.get(),
            odim0 as dim_t,
            odim1 as dim_t,
            method as c_uint,
            is_inverse,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Rotate an Image
///
/// Rotating an input image can be done using either NEAREST or BILINEAR interpolations.
/// Nearest interpolation will pick the nearest value to the location, whereas bilinear
/// interpolation will do a weighted interpolation for calculate the new size.
///
/// This function does not differentiate between images and data. As long as the array is defined,
/// it will rotate any type or size of array.
///
/// The crop option allows you to choose whether to resize the image. If crop is set to false, ie.
/// the entire rotated image will be a part of the array and the new array size will be greater
/// than or equal to the input array size. If crop is set to true, then the new array size is same
/// as the input array size and the data that falls outside the boundaries of the array is
/// discarded.
///
/// Any location of the rotated array that does not map to a location of the input array is set to
/// 0.
///
/// # Parameters
///
/// - `input` is the input image
/// - `theta` is the amount of angle (in radians) image should be rotated
/// - `crop` indicates if the rotated image has to be cropped to original size
/// - `method` indicates which interpolation method to use for rotating the image. It uses enum
/// [InterpType](./enum.InterpType.html) to identify the interpolation method.
///
/// # Return Values
///
/// Rotated Array
pub fn rotate<T: HasAfEnum>(
    input: &Array<T>,
    theta: f64,
    crop: bool,
    method: InterpType,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_rotate(
            &mut temp as *mut af_array,
            input.get(),
            theta as c_float,
            crop,
            method as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Translate an Image
///
/// Translating an image is moving it along 1st and 2nd dimensions by trans0 and trans1. Positive
/// values of these will move the data towards negative x and negative y whereas negative values of
/// these will move the positive right and positive down. See the example below for more.
///
/// To specify an output dimension, use the odim0 and odim1 for dim0 and dim1 respectively. The
/// size of 2rd and 3rd dimension is same as input. If odim0 and odim1 and not defined, then the
/// output dimensions are same as the input dimensions and the data out of bounds will be
/// discarded.
///
/// All new values that do not map to a location of the input array are set to 0.
///
/// Translate is a special case of the [transform](./fn.transform.html) function.
///
/// # Parameters
///
/// - `input` is input image
/// - `trans0` is amount by which the first dimension is translated
/// - `trans1` is amount by which the second dimension is translated
/// - `odim0` is the first output dimension
/// - `odim1` is the second output dimension
/// - `method` is the interpolation type (Nearest by default)
///
/// # Return Values
///
/// Translated Image(Array).
pub fn translate<T: HasAfEnum>(
    input: &Array<T>,
    trans0: f32,
    trans1: f32,
    odim0: i64,
    odim1: i64,
    method: InterpType,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_translate(
            &mut temp as *mut af_array,
            input.get(),
            trans0,
            trans1,
            odim0 as dim_t,
            odim1 as dim_t,
            method as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Scale an Image
///
/// Scale is the same functionality as [resize](./fn.resize.html) except that the scale function uses the transform kernels. The other difference is that scale does not set boundary values to be the boundary of the input array. Instead these are set to 0.
///
/// Scale is a special case of the [transform](./fn.transform.html) function.
///
/// # Parameters
///
/// - `input` is input image
/// - `trans0` is amount by which the first dimension is translated
/// - `trans1` is amount by which the second dimension is translated
/// - `odim0` is the first output dimension
/// - `odim1` is the second output dimension
/// - `method` is the interpolation type (Nearest by default)
///
/// # Return Values
///
/// Translated Image(Array).
pub fn scale<T: HasAfEnum>(
    input: &Array<T>,
    scale0: f32,
    scale1: f32,
    odim0: i64,
    odim1: i64,
    method: InterpType,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_scale(
            &mut temp as *mut af_array,
            input.get(),
            scale0,
            scale1,
            odim0 as dim_t,
            odim1 as dim_t,
            method as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Skew an image
///
/// Skew function skews the input array along dim0 by skew0 and along dim1 by skew1. The skew
/// areguments are in radians. Skewing the data means the data remains parallel along 1 dimensions
/// but the other dimensions gets moved along based on the angle. If both skew0 and skew1 are
/// specified, then the data will be skewed along both directions. Explicit output dimensions
/// can be specified using odim0 and odim1. All new values that do not map to a location of the input array are set to 0.
///
/// Skew is a special case of the [transform](./fn.transform.html) function.
///
/// # Parameters
///
/// - `input` is the image to be skewed
/// - `skew0` is the factor by which data is skewed along first dimension
/// - `skew1` is the factor by which data is skewed along second dimension
/// - `odim0` is the output length along first dimension
/// - `odim1` is the output length along second dimension
/// - `method` indicates which interpolation method to use for rotating the image. It uses enum
/// [InterpType](./enum.InterpType.html) to identify the interpolation method.
/// - `is_inverse` indicates if to apply inverse/forward transform
///
/// # Return Values
///
/// Skewed Image
pub fn skew<T: HasAfEnum>(
    input: &Array<T>,
    skew0: f32,
    skew1: f32,
    odim0: i64,
    odim1: i64,
    method: InterpType,
    is_inverse: bool,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_skew(
            &mut temp as *mut af_array,
            input.get(),
            skew0,
            skew1,
            odim0 as dim_t,
            odim1 as dim_t,
            method as c_uint,
            is_inverse,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Compute Histogram of an Array
///
/// A histogram is a representation of the distribution of given data. This representation is
/// essentially a graph consisting of the data range or domain on one axis and frequency of
/// occurence on the other axis. All the data in the domain is counted in the appropriate bin. The
/// total number of elements belonging to each bin is known as the bin's frequency.
///
/// The regular histogram function creates bins of equal size between the minimum and maximum of
/// the input data (min and max are calculated internally). The histogram min-max function takes
/// input parameters minimum and maximum, and divides the bins into equal sizes within the range
/// specified by min and max parameters. All values less than min in the data range are placed in
/// the first (min) bin and all values greater than max will be placed in the last (max) bin.
///
/// # Parameters
///
/// - `input` is the Array whose histogram has to be computed
/// - `nbins` is the number bins the input data has to be categorized into.
/// - `minval` is the minimum value of bin ordering
/// - `maxval` is the maximum value of bin ordering
///
/// # Return Values
///
/// Histogram of input Array
pub fn histogram<T>(input: &Array<T>, nbins: u32, minval: f64, maxval: f64) -> Array<u32>
where
    T: HasAfEnum + RealNumber,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_histogram(
            &mut temp as *mut af_array,
            input.get(),
            nbins,
            minval,
            maxval,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Dilate an Image
///
/// The dilation function takes two pieces of data as inputs. The first is the input image to be
/// morphed, and the second is the mask indicating the neighborhood around each pixel to match.
///
/// In dilation, for each pixel, the mask is centered at the pixel. If the center pixel of the mask
/// matches the corresponding pixel on the image, then the mask is accepted. If the center pixels
/// do not matches, then the mask is ignored and no changes are made.
///
/// For further reference, see [here](https://en.wikipedia.org/wiki/Dilation_(morphology)).
///
/// # Parameters
///
/// - `input` is the input image
/// - `mask` is the morphological operation mask
///
/// # Return Values
///
/// Dilated Image(Array)
pub fn dilate<T>(input: &Array<T>, mask: &Array<T>) -> Array<T>
where
    T: HasAfEnum + ImageFilterType,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_dilate(&mut temp as *mut af_array, input.get(), mask.get());
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Erode an Image
///
/// The erosion function is a morphological transformation on an image that requires two inputs.
/// The first is the image to be morphed, and the second is the mask indicating neighborhood that
/// must be white in order to preserve each pixel.
///
/// In erode, for each pixel, the mask is centered at the pixel. If each pixel of the mask matches
/// the corresponding pixel on the image, then no change is made. If there is at least one
/// mismatch, then pixels are changed to the background color (black).
///
/// For further reference, see [here](https://en.wikipedia.org/wiki/Erosion_(morphology)).
///
/// # Parameters
///
/// - `input` is the input image
/// - `mask` is the morphological operation mask
///
/// # Return Values
///
/// Eroded Image(Array)
pub fn erode<T>(input: &Array<T>, mask: &Array<T>) -> Array<T>
where
    T: HasAfEnum + ImageFilterType,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_erode(&mut temp as *mut af_array, input.get(), mask.get());
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Dilate a Volume
///
/// Dilation for a volume is similar to the way dilation works on an image. Only difference is that
/// the masking operation is performed on a volume instead of a rectangular region.
///
/// # Parameters
///
/// - `input` is the input volume
/// - `mask` is the morphological operation mask
///
/// # Return Values
///
/// Dilated Volume(Array)
pub fn dilate3<T>(input: &Array<T>, mask: &Array<T>) -> Array<T>
where
    T: HasAfEnum + ImageFilterType,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_dilate3(&mut temp as *mut af_array, input.get(), mask.get());
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Erode a Volume
///
/// Erosion for a volume is similar to the way erosion works on an image. Only difference is that
/// the masking operation is performed on a volume instead of a rectangular region.
///
/// # Parameters
///
/// - `input` is the input volume
/// - `mask` is the morphological operation mask
///
/// # Return Values
///
/// Eroded Volume(Array)
pub fn erode3<T>(input: &Array<T>, mask: &Array<T>) -> Array<T>
where
    T: HasAfEnum + ImageFilterType,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_erode3(&mut temp as *mut af_array, input.get(), mask.get());
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Bilateral Filter.
///
/// A bilateral filter is a edge-preserving filter that reduces noise in an image. The intensity of
/// each pixel is replaced by a weighted average of the intensities of nearby pixels. The weights
/// follow a Gaussian distribution and depend on the distance as well as the color distance.
///
/// The bilateral filter requires the size of the filter (in pixels) and the upper bound on color
/// values, N, where pixel values range from 0–N inclusively.
///
/// # Parameters
///
/// - `input` array is the input image
/// - `spatial_sigma` is the spatial variance parameter that decides the filter window
/// - `chromatic_sigma` is the chromatic variance parameter
/// - `iscolor` indicates if the input is color image or grayscale
///
/// # Return Values
///
/// Filtered Image - Array
pub fn bilateral<T>(
    input: &Array<T>,
    spatial_sigma: f32,
    chromatic_sigma: f32,
    iscolor: bool,
) -> Array<T::AbsOutType>
where
    T: HasAfEnum + ImageFilterType,
    T::AbsOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_bilateral(
            &mut temp as *mut af_array,
            input.get(),
            spatial_sigma,
            chromatic_sigma,
            iscolor,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Meanshift Filter.
///
/// A meanshift filter is an edge-preserving smoothing filter commonly used in object tracking and
/// image segmentation.
///
/// This filter replaces each pixel in the image with the mean of the values within a given given
/// color and spatial radius. The meanshift filter is an iterative algorithm that continues until a
/// maxium number of iterations is met or until the value of the means no longer changes.
///
/// # Parameters
///
/// - `input` array is the input image
/// - `spatial_sigma` is the spatial variance parameter that decides the filter window
/// - `chromatic_sigma` is the chromatic variance parameter
/// - `iter` is the number of iterations filter operation is performed
/// - `iscolor` indicates if the input is color image or grayscale
///
/// # Return Values
///
/// Filtered Image - Array
pub fn mean_shift<T>(
    input: &Array<T>,
    spatial_sigma: f32,
    chromatic_sigma: f32,
    iter: u32,
    iscolor: bool,
) -> Array<T>
where
    T: HasAfEnum + RealNumber,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_mean_shift(
            &mut temp as *mut af_array,
            input.get(),
            spatial_sigma,
            chromatic_sigma,
            iter,
            iscolor,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

macro_rules! filt_func_def {
    ($doc_str: expr, $fn_name: ident, $ffi_name: ident) => {
        #[doc=$doc_str]
        ///
        ///# Parameters
        ///
        /// - `input` is the input image(Array)
        /// - `wlen` is the horizontal length of the filter
        /// - `hlen` is the vertical length of the filter
        /// - `etype` is enum of type [BorderType](./enum.BorderType.html)
        ///
        ///# Return Values
        ///
        /// An Array with filtered image data.
        pub fn $fn_name<T>(input: &Array<T>, wlen: u64, wwid: u64, etype: BorderType) -> Array<T>
        where
            T: HasAfEnum + ImageFilterType,
        {
            unsafe {
        let mut temp: af_array = std::ptr::null_mut();
                let err_val = $ffi_name(
                    &mut temp as *mut af_array,
                    input.get(),
                    wlen as dim_t,
                    wwid as dim_t,
                    etype as c_uint,
                );
                HANDLE_ERROR(AfError::from(err_val));
                temp.into()
            }
        }
    };
}

filt_func_def!("Median filter", medfilt, af_medfilt);
filt_func_def!(
    "Box filter with minimum as box operation",
    minfilt,
    af_minfilt
);
filt_func_def!(
    "Box filter with maximum as box operation",
    maxfilt,
    af_maxfilt
);

/// Creates a Gaussian Kernel.
///
/// This function creates a kernel of a specified size that contains a Gaussian distribution. This
/// distribution is normalized to one. This is most commonly used when performing a Gaussian blur
/// on an image. The function takes two sets of arguments, the size of the kernel (width and height
/// in pixels) and the sigma parameters (for row and column) which effect the distribution of the
/// weights in the y and x directions, respectively.
///
/// Changing sigma causes the weights in each direction to vary. Sigma is calculated internally as
/// (0.25 * rows + 0.75) for rows and similarly for columns.
///
/// # Parameters
///
/// - `rows` is number of rows of kernel
/// - `cols` is number of cols of kernel
/// - `sigma_r` is standard deviation of rows
/// - `sigma_c` is standard deviation of cols
///
/// # Return Values
///
/// An Array with gaussian kernel values
pub fn gaussian_kernel(rows: i32, cols: i32, sigma_r: f64, sigma_c: f64) -> Array<f32> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_gaussian_kernel(&mut temp as *mut af_array, rows, cols, sigma_r, sigma_c);
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Color space conversion
///
/// Following are the supported conversions
///
/// - RGB => GRAY
/// - GRAY => RGB
/// - RGB => HSV
/// - HSV => RGB
/// - YCbCr => RGB
/// - RGB => YCbCr
///
/// RGB (Red, Green, Blue) is the most common format used in computer imaging. RGB stores
/// individual values for red, green and blue, and hence the 3 values per pixel. A combination of
/// these three values produces the gamut of unique colors.
///
/// HSV (Hue, Saturation, Value), also known as HSB (hue, saturation, brightness), is often used by
/// artists because it is more natural to think about a color in terms of hue and saturation than
/// in terms of additive or subtractive color components (as in RGB). HSV is a transformation of
/// RGB colorspace; its components and colorimetry are relative to the RGB colorspace from which it
/// was derived. Like RGB, HSV also uses 3 values per pixel.
///
/// GRAY is a single channel color space where pixel value ranges from 0 to 1. Zero represents
/// black, one represent white and any value between zero & one is a gray value
///
/// # Parameters
///
/// - `input` is the input image
/// - `tospace` is the target color space. Takes values of [ColorSpace](./enum.ColorSpace.html)
/// - `fromspace` is the source image color space. Takes values of
/// [ColorSpace](./enum.ColorSpace.html)
///
/// # Return Values
///
/// An Array with input image values in target color space
pub fn color_space<T>(input: &Array<T>, tospace: ColorSpace, fromspace: ColorSpace) -> Array<T>
where
    T: HasAfEnum + RealNumber,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_color_space(
            &mut temp as *mut af_array,
            input.get(),
            tospace as c_uint,
            fromspace as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Find blobs in given image.
///
/// Given a binary image (with zero representing background pixels), regions computes a floating
/// point image where each connected component is labeled from 1 to N, the total number of
/// components in the image.
///
/// A component is defined as one or more nonzero pixels that are connected by the specified
/// connectivity (either [`Connectivity::FOUR`](./enum.Connectivity.html) or [`Connectivity::EIGHT`](./enum.Connectivity.html)) in two dimensions.
///
/// # Parameters
///
/// - `input` is the input image
/// - `conn` can take one of the values of [Connectivity](./enum.Connectivity.html)
///
/// # Return Values
///
/// Array with labels indicating different regions
pub fn regions<OutType>(input: &Array<bool>, conn: Connectivity) -> Array<OutType>
where
    OutType: HasAfEnum + RealNumber,
{
    let otype = OutType::get_af_dtype();
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_regions(
            &mut temp as *mut af_array,
            input.get(),
            conn as c_uint,
            otype as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Sobel Operator
///
/// Sobel operators perform a 2-D spatial gradient measurement on an image to emphasize the regions
/// of high spatial frequency, namely edges. A more in depth discussion on it can be found [here](https://en.wikipedia.org/wiki/Sobel_operator).
///
/// # Parameters
///
/// - `input` is the input image
/// - `ker_size` is the kernel size of sobel operator
///
/// # Return Values
///
/// A tuple of Arrays.
///
/// The first Array has derivatives along horizontal direction
///
/// The second Array has derivatives along vertical direction
pub fn sobel<T>(input: &Array<T>, ker_size: u32) -> (Array<T::SobelOutType>, Array<T::SobelOutType>)
where
    T: HasAfEnum + ImageFilterType,
    T::SobelOutType: HasAfEnum,
{
    unsafe {
        let mut dx: af_array = std::ptr::null_mut();
        let mut dy: af_array = std::ptr::null_mut();
        let err_val = af_sobel_operator(
            &mut dx as *mut af_array,
            &mut dy as *mut af_array,
            input.get(),
            ker_size,
        );
        HANDLE_ERROR(AfError::from(err_val));
        (dx.into(), dy.into())
    }
}

/// Histogram Equalization
///
/// # Parameters
///
/// - `input` is the input Array to be equalized
/// - `hist` is the Array to be used for equalizing input
///
/// # Return Values
/// Equalized Array
pub fn hist_equal<T>(input: &Array<T>, hist: &Array<u32>) -> Array<T>
where
    T: HasAfEnum + RealNumber,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_hist_equal(&mut temp as *mut af_array, input.get(), hist.get());
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

macro_rules! grayrgb_func_def {
    ($doc_str: expr, $fn_name: ident, $ffi_name: ident) => {
        #[doc=$doc_str]
        ///
        ///# Parameters
        ///
        /// - `r` is fraction of red channel to appear in output
        /// - `g` is fraction of green channel to appear in output
        /// - `b` is fraction of blue channel to appear in output
        ///
        ///#Return Values
        ///
        ///An Array with image data in target color space
        pub fn $fn_name<T>(input: &Array<T>, r: f32, g: f32, b: f32) -> Array<T>
        where
            T: HasAfEnum + GrayRGBConvertible,
        {
            unsafe {
        let mut temp: af_array = std::ptr::null_mut();
                let err_val = $ffi_name(&mut temp as *mut af_array, input.get(), r, g, b);
                HANDLE_ERROR(AfError::from(err_val));
                temp.into()
            }
        }
    };
}

grayrgb_func_def!("Color(RGB) to Grayscale conversion", rgb2gray, af_rgb2gray);
grayrgb_func_def!("Grayscale to Color(RGB) conversion", gray2rgb, af_gray2rgb);

macro_rules! hsvrgb_func_def {
    ($doc_str: expr, $fn_name: ident, $ffi_name: ident) => {
        #[doc=$doc_str]
        pub fn $fn_name<T>(input: &Array<T>) -> Array<T>
        where
            T: HasAfEnum + RealFloating,
        {
            unsafe {
        let mut temp: af_array = std::ptr::null_mut();
                let err_val = $ffi_name(&mut temp as *mut af_array, input.get());
                HANDLE_ERROR(AfError::from(err_val));
                temp.into()
            }
        }
    };
}

hsvrgb_func_def!("HSV to RGB color space conversion", hsv2rgb, af_hsv2rgb);
hsvrgb_func_def!("RGB to HSV color space conversion", rgb2hsv, af_rgb2hsv);

/// Generate an array with image windows as columns
///
/// unwrap takes in an input image along with the window sizes wx and wy, strides sx and sy, and
/// padding px and py. This function then generates a matrix where each windows is an independent
/// column.
///
/// The number of columns (rows if is_column is true) in the output array are govenered by the
/// number of windows that can be fit along x and y directions. Padding is applied along all 4
/// sides of the matrix with px defining the height of the padding along dim 0 and py defining the
/// width of the padding along dim 1.
///
/// The first column window is always at the top left corner of the input including padding. If a
/// window cannot fit before the end of the matrix + padding, it is skipped from the generated
/// matrix.
///
/// Padding can take a maximum value of window - 1 repectively for x and y.
///
/// For multiple channels (3rd and 4th dimension), the generated matrix contains the same number of
/// channels as the input matrix. Each channel of the output matrix corresponds to the same channel
/// of the input.
///
/// # Parameters
///
/// - `input` is the input image
/// - `wx` is the block window size along 0th-dimension between \[1, input.dims\[0\] + px\]
/// - `wy` is the block window size along 1st-dimension between \[1, input.dims\[1\] + py\]
/// - `sx` is the stride along 0th-dimension
/// - `sy` is the stride along 1st-dimension
/// - `px` is the padding along 0th-dimension between [0, wx). Padding is applied both before and after.
/// - `py` is the padding along 1st-dimension between [0, wy). Padding is applied both before and after.
/// - `is_column` specifies the layout for the unwrapped patch. If is_column is false, the unrapped patch is laid out as a row.
///
/// # Return Values
///
/// An Array with image windows as columns
///
/// # Examples
///
/// ```text
/// A [5 5 1 1]
/// 10 15 20 25 30
/// 11 16 21 26 31
/// 12 17 22 27 32
/// 13 18 23 28 33
/// 14 19 24 29 34
///
/// // Window 3x3, strides 1x1, padding 0x0
/// unwrap(A, 3, 3, 1, 1, 0, 0, False) [9 9 1 1]
/// 10 11 12 15 16 17 20 21 22
/// 11 12 13 16 17 18 21 22 23
/// 12 13 14 17 18 19 22 23 24
/// 15 16 17 20 21 22 25 26 27
/// 16 17 18 21 22 23 26 27 28
/// 17 18 19 22 23 24 27 28 29
/// 20 21 22 25 26 27 30 31 32
/// 21 22 23 26 27 28 31 32 33
/// 22 23 24 27 28 29 32 33 34
///
/// // Window 3x3, strides 1x1, padding 1x1
/// unwrap(A, 3, 3, 1, 1, 1, 1, False) [9 25 1 1]
///  0  0  0  0  0  0 10 11 12 13  0 15 16 17 18  0 20 21 22 23  0 25 26 27 28
///  0  0  0  0  0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
///  0  0  0  0  0 11 12 13 14  0 16 17 18 19  0 21 22 23 24  0 26 27 28 29  0
///  0 10 11 12 13  0 15 16 17 18  0 20 21 22 23  0 25 26 27 28  0 30 31 32 33
/// 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/// 11 12 13 14  0 16 17 18 19  0 21 22 23 24  0 26 27 28 29  0 31 32 33 34  0
///  0 15 16 17 18  0 20 21 22 23  0 25 26 27 28  0 30 31 32 33  0  0  0  0  0
/// 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  0  0  0  0  0
/// 16 17 18 19  0 21 22 23 24  0 26 27 28 29  0 31 32 33 34  0  0  0  0  0  0
/// ```
#[allow(clippy::too_many_arguments)]
pub fn unwrap<T: HasAfEnum>(
    input: &Array<T>,
    wx: i64,
    wy: i64,
    sx: i64,
    sy: i64,
    px: i64,
    py: i64,
    is_column: bool,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_unwrap(
            &mut temp as *mut af_array,
            input.get(),
            wx,
            wy,
            sx,
            sy,
            px,
            py,
            is_column,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Converts unwrapped image to an image
///
/// Wrap takes an unwrapped image (see unwrap()) and converts it back to an image.
///
/// The inputs to this function should be the same as the inputs used to generate the unwrapped
/// image.
///
/// # Parameters
///
/// - `input` is the output of unwrap function call
/// - `ox` is the 0th-dimension of output image
/// - `oy` is the 1st-dimension of output image
/// - `wx` is the block window size along 0th-dimension between
/// - `wy` is the block window size along 1st-dimension between
/// - `sx` is the stride along 0th-dimension
/// - `sy` is the stride along 1st-dimension
/// - `px` is the padding used along 0th-dimension between [0, wx).
/// - `py` is the padding used along 1st-dimension between [0, wy).
/// - `is_column` specifies the layout for the unwrapped patch. If is_column is false, the rows are treated as the patches
///
/// # Return Values
///
/// Image(Array) created from unwrapped Image(Array)
#[allow(clippy::too_many_arguments)]
pub fn wrap<T: HasAfEnum>(
    input: &Array<T>,
    ox: i64,
    oy: i64,
    wx: i64,
    wy: i64,
    sx: i64,
    sy: i64,
    px: i64,
    py: i64,
    is_column: bool,
) -> Array<T> {
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_wrap(
            &mut temp as *mut af_array,
            input.get(),
            ox,
            oy,
            wx,
            wy,
            sx,
            sy,
            px,
            py,
            is_column,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Summed area table of an Image
///
/// # Parameters
///
/// - `input` is the input image
///
/// # Return Values
///
/// Summed area table (a.k.a Integral Image) of the input image.
pub fn sat<T>(input: &Array<T>) -> Array<T::AggregateOutType>
where
    T: HasAfEnum + RealNumber,
    T::AggregateOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_sat(&mut temp as *mut af_array, input.get());
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// RGB to YCbCr colorspace converter.
///
/// RGB (Red, Green, Blue) is the most common format used in computer imaging. RGB stores
/// individual values for red, green and blue, and hence the 3 values per pixel. A combination of
/// these three values produces the gamut of unique colors.
///
/// YCbCr is a family of color spaces used as a part of the color image pipeline in video and
/// digital photography systems where Y is luma component and Cb & Cr are the blue-difference and
/// red-difference chroma components.
///
/// Input array to this function should be of real data in the range [0,1].
///
/// # Parameters
///
/// - `input` is the input image in RGB color space
/// - `standard` is the target color space - [YCbCr standard](./enum.YCCStd.html)
///
/// # Return Values
///
/// Image(Array) in YCbCr color space
pub fn rgb2ycbcr<T>(input: &Array<T>, standard: YCCStd) -> Array<T>
where
    T: HasAfEnum + RealFloating,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_rgb2ycbcr(&mut temp as *mut af_array, input.get(), standard as c_uint);
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// YCbCr to RGB colorspace converter.
///
/// YCbCr is a family of color spaces used as a part of the color image pipeline in video and
/// digital photography systems where Y is luma component and Cb & Cr are the blue-difference and
/// red-difference chroma components.
///
/// RGB (Red, Green, Blue) is the most common format used in computer imaging. RGB stores
/// individual values for red, green and blue, and hence the 3 values per pixel. A combination of
/// these three values produces the gamut of unique colors.
///
/// Input array to this function should be of real data with the following range in their
/// respective channels.
///
/// - Y  −> [16,219]
/// - Cb −> [16,240]
/// - Cr −> [16,240]
///
/// # Parameters
///
/// - `input` is the input image in YCbCr color space
/// - `standard` is the [YCbCr standard](./enum.YCCStd.html) in which input image color space is
/// present.
///
/// # Return Values
///
/// Image(Array) in RGB color space
pub fn ycbcr2rgb<T>(input: &Array<T>, standard: YCCStd) -> Array<T>
where
    T: HasAfEnum + RealFloating,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_ycbcr2rgb(&mut temp as *mut af_array, input.get(), standard as c_uint);
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Function to check if Image I/O is available
///
/// # Parameters
///
/// None
///
/// # Return Values
///
/// Return a boolean indicating if ArrayFire was compiled with Image I/O support
pub fn is_imageio_available() -> bool {
    let mut temp: bool = false;
    unsafe {
        af_is_image_io_available(&mut temp as *mut bool);
    }
    temp
}

/// Transform input coordinates
///
/// The transform function uses a perspective transform matrix to transform input coordinates
/// (given as two dimensions) into a coordinates matrix.
///
/// The output is a 4x2 matrix, indicating the coordinates of the 4 bidimensional transformed
/// points.
///
/// # Parameters
///
/// - `tf` is the transformation matrix
/// - `d0` is the first input dimension
/// - `d1` is the second input dimension
///
/// # Return Values
///
/// Transformed coordinates
pub fn transform_coords<T>(tf: &Array<T>, d0: f32, d1: f32) -> Array<T>
where
    T: HasAfEnum + RealFloating,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_transform_coordinates(&mut temp as *mut af_array, tf.get(), d0, d1);
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Find Image moments
///
/// # Parameters
///
/// - `input` is the input image
/// - `moment` is the type of moment to be computed, takes a value of
/// [enum](./enum.MomentType.html)
///
/// # Return Values
///
/// Moments Array
pub fn moments<T>(input: &Array<T>, moment: MomentType) -> Array<f32>
where
    T: HasAfEnum + MomentsComputable,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_moments(&mut temp as *mut af_array, input.get(), moment as c_uint);
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Find Image moment for whole image
///
/// # Parameters
///
/// - `input` is the input image
/// - `moment` is the type of moment to be computed, takes a value of
/// [enum](./enum.MomentType.html)
///
/// # Return Values
///
/// Moment value of the whole image
pub fn moments_all<T>(input: &Array<T>, moment: MomentType) -> f64
where
    T: HasAfEnum + MomentsComputable,
{
    let mut temp: f64 = 0.0;
    unsafe {
        let err_val = af_moments_all(&mut temp as *mut c_double, input.get(), moment as c_uint);
        HANDLE_ERROR(AfError::from(err_val));
    }
    temp
}

/// One dimensional median filter on image
///
/// # Parameters
///
///  - `input` is the input image(Array)
///  - `wlen` is the horizontal length of the filter
///  - `etype` is enum of type [BorderType](./enum.BorderType.html)
///
/// # Return Values
///
/// An Array with filtered image data.
pub fn medfilt1<T>(input: &Array<T>, wlen: u64, etype: BorderType) -> Array<T>
where
    T: HasAfEnum + ImageFilterType,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_medfilt1(
            &mut temp as *mut af_array,
            input.get(),
            wlen as dim_t,
            etype as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Canny edge detection operator
///
/// The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images. A more in depth discussion on it can be found [here](https://en.wikipedia.org/wiki/Canny_edge_detector).
///
/// # Parameters
///
/// - `input` is the input image
/// - `threshold_type` helps determine if user set high threshold is to be used or not. It can take values defined by the enum [CannyThresholdType](./enum.CannyThresholdType.html)
/// - `low` is the lower threshold % of the maximum or auto-derived high
/// - `high` is the higher threshold % of maximum value in gradient image used in hysteresis procedure. This value is ignored if [CannyThresholdType::OTSU](./enum.CannyThresholdType.html) is chosen.
/// - `sobel_window` is the window size of sobel kernel for computing gradient direction and magnitude.
/// - `is_fast` indicates if L<SUB>1</SUB> norm(faster but less accurate) is used to compute image gradient magnitude instead of L<SUB>2</SUB> norm.
///
/// # Return Values
///
/// An Array of binary type [DType::B8](./enum.DType.html) indicating edges(All pixels with
/// non-zero values are edges).
pub fn canny<T>(
    input: &Array<T>,
    threshold_type: CannyThresholdType,
    low: f32,
    high: f32,
    sobel_window: u32,
    is_fast: bool,
) -> Array<bool>
where
    T: HasAfEnum + EdgeComputable,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_canny(
            &mut temp as *mut af_array,
            input.get(),
            threshold_type as c_int,
            low,
            high,
            sobel_window as c_uint,
            is_fast,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Anisotropic smoothing filter
///
/// Anisotropic diffusion algorithm aims at removing noise in the images
/// while preserving important features such as edges. The algorithm
/// essentially creates a scale space representation of the original
/// image, where image from previous step is used to create a new version
/// of blurred image using the diffusion process. Standard isotropic diffusion
/// methods such as gaussian blur, doesn't take into account the local
/// content(smaller neighborhood of current processing pixel) while removing
/// noise. Anisotropic diffusion uses the flux equations given below to
/// achieve that. Flux equation is the formula used by the diffusion process
/// to determine how much a pixel in neighborhood should contribute to
/// the blurring operation being done at the current pixel at a given iteration.
///
/// The flux function can be either exponential or quadratic.
///
/// <table>
/// <caption id="multi row">Available Flux Functions</caption>
/// <tr>
///     <td align="center" style="vertical-align:middle;">
///       AF_FLUX_QUADRATIC
///     </td>
///     <td align="center">
///       \begin{equation}
///         \frac{1}{1 + (\frac{\| \nabla I\|}{K})^2}
///       \end{equation}
///     </td>
/// </tr>
/// <tr>
///     <td align="center" style="vertical-align:middle;">
///       AF_FLUX_EXPONENTIAL
///     </td>
///     <td align="center">
///       \begin{equation}
///         \exp{-(\frac{\| \nabla I\|}{K})^2}
///       \end{equation}
///     </td>
/// </tr>
/// </table>
///
/// Please be cautious using the time step parameter to the function.
/// Appropriate time steps for solving this type of p.d.e. depend on
/// the dimensionality of the image and the order of the equation.
/// Stable values for most 2D and 3D functions are 0.125 and 0.0625,
/// respectively. The time step values are automatically constrained
/// to the stable value.
///
/// Another input parameter to be cautious about is the conductance
/// parameter, lower values strongly preserve image features and
/// vice-versa. For human vision, this value ranges from 0.5 to 2.0.
///
/// # Parameters
///
/// - `img` is the noisy input image
/// - `dt` is the timestep for diffusion equation
/// - `k` is the conductance parameter for diffusion
/// - `iters` is the number of iterations diffusion is performed
/// - `fftype` dictates the type of flux flow and it is an
///    [enum](./enum.DiffusionEq.html)
/// - `diff_kind` dictates the type of diffusion and it is an
///   [enum](./enum.FluxFn.html)
///
/// # Return Values
///
/// Returns an anisotropically smoothed and noise-free image
///
/// ### References
///
///  - Pietro Perona and Jitendra Malik, `Scale-space and edge detection
///    using anisotropic diffusion,` IEEE Transactions on Pattern Analysis
///    Machine Intelligence, vol. 12, pp. 629-639, 1990.
///  - R. Whitaker and X. Xue. `Variable-Conductance, Level-Set Curvature
///    for Image Denoising`, International Conference on Image Processing,
///    2001 pp. 142-145, Vol.3.
pub fn anisotropic_diffusion<T>(
    img: &Array<T>,
    dt: f32,
    k: f32,
    iters: u32,
    fftype: FluxFn,
    diff_kind: DiffusionEq,
) -> Array<T::AbsOutType>
where
    T: HasAfEnum + EdgeComputable,
    T::AbsOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_anisotropic_diffusion(
            &mut temp as *mut af_array,
            img.get(),
            dt,
            k,
            iters,
            fftype as c_uint,
            diff_kind as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Segment image based on similar pixel characteristics
///
/// This filter is similar to [regions](./fn.regions.html) with additional criteria for
/// segmentation. In regions, all connected pixels are considered to be a single component.
/// In this variation of connected components, pixels having similar pixel statistics of the
/// neighborhoods around a given set of seed points are grouped together.
///
/// The parameter `radius` determines the size of neighborhood around a seed point.
///
/// Mean and Variance are the pixel statistics that are computed across all neighborhoods around
/// the given set of seed points. The pixels which are connected to seed points and lie in the
/// confidence interval are grouped together. Given below is the confidence interval.
///
/// \begin{equation}
///     [\mu - \alpha * \sigma, \mu + \alpha * \sigma]
/// \end{equation}
/// where
///
/// - $ \mu $ is the mean of the pixels in the seed neighborhood
/// - $ \sigma^2 $ is the variance of the pixels in the seed neighborhood
/// - $ \alpha $ is the multiplier used to control the width of the confidence interval.
///
/// This filter follows an iterative approach for fine tuning the segmentation. An initial
/// segmenetation followed by a finite number `iterations` of segmentations are performed.
/// The user provided parameter `iterations` is only a request and the algorithm can prempt
/// the execution if variance approaches zero. The initial segmentation uses the mean and
/// variance calculated from the neighborhoods of all the seed points. For subsequent
/// segmentations, all pixels in the previous segmentation are used to re-calculate the mean
/// and variance (as opposed to using the pixels in the neighborhood of the seed point).
///
/// # Parameters
///
/// - `input` is the input image
/// - `seedx` contains the x coordinates of seeds in image coordinates
/// - `seedy` contains the y coordinates of seeds in image coordinates
/// - `radius` is the neighborhood region to be considered around each seed point
/// - `multiplier` controls the threshold range computed from the mean and variance of seed point neighborhoods
/// - `iterations` is the number of times the segmentation in performed
/// - `segmented_value` is the value to which output array valid pixels are set to
///
/// # Return Values
///
/// Segmented(based on pixel characteristics) image(Array) with regions surrounding the seed points
pub fn confidence_cc<InOutType>(
    input: &Array<InOutType>,
    seedx: &Array<u32>,
    seedy: &Array<u32>,
    radius: u32,
    multiplier: u32,
    iterations: u32,
    segmented_val: f64,
) -> Array<InOutType>
where
    InOutType: ConfidenceCCInput,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_confidence_cc(
            &mut temp as *mut af_array,
            input.get(),
            seedx.get(),
            seedy.get(),
            radius,
            multiplier,
            iterations as i32,
            segmented_val,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Iterative Deconvolution
///
/// The following table shows the iteration update equations of the respective
/// deconvolution algorithms.
///
/// <table>
/// <tr><th>Algorithm</th><th>Update Equation</th></tr>
/// <tr>
///     <td>LandWeber</td>
///     <td>
///         $ \hat{I}_{n} = \hat{I}_{n-1} + \alpha * P^T \otimes (I - P \otimes \hat{I}_{n-1}) $
///     </td>
/// </tr>
/// <tr>
///   <td>Richardson-Lucy</td>
///   <td>
///     $ \hat{I}_{n} = \hat{I}_{n-1} . ( \frac{I}{\hat{I}_{n-1} \otimes P} \otimes P^T ) $
///   </td>
/// </tr>
/// </table>
///
/// where
///
/// - $ I $ is the observed(input/blurred) image
/// - $ P $ is the point spread function
/// - $ P^T $ is the transpose of point spread function
/// - $ \hat{I}_{n} $ is the current iteration's updated image estimate
/// - $ \hat{I}_{n-1} $ is the previous iteration's image estimate
/// - $ \alpha $ is the relaxation factor
/// - $ \otimes $ indicates the convolution operator
///
/// The type of output Array from deconvolution will be of type f64 if
/// the input array type is f64. For other types, output type will be f32 type.
/// Should the caller want to save the image to disk or require the values of output
/// to be in a fixed range, that should be done by the caller explicitly.
pub fn iterative_deconv<T>(
    input: &Array<T>,
    kernel: &Array<f32>,
    iterations: u32,
    relaxation_factor: f32,
    algo: IterativeDeconvAlgo,
) -> Array<T::AbsOutType>
where
    T: DeconvInput,
    T::AbsOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_iterative_deconv(
            &mut temp as *mut af_array,
            input.get(),
            kernel.get(),
            iterations,
            relaxation_factor,
            algo as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}

/// Inverse deconvolution
///
/// This is a linear algorithm i.e. they are non-iterative in
/// nature and usually faster than iterative deconvolution algorithms.
///
/// Depending on the values passed on to `algo` of type enum [InverseDeconvAlgo](./enum.inverse_deconv_algo.html),
/// different equations are used to compute the final result.
///
/// #### Tikhonov's Deconvolution Method:
///
/// The update equation for this algorithm is as follows:
///
/// <div>
/// \begin{equation}
/// \hat{I}_{\omega} = \frac{ I_{\omega} * P^{*}_{\omega} } { |P_{\omega}|^2 + \gamma }
/// \end{equation}
/// </div>
///
/// where
///
/// - $ I_{\omega} $ is the observed(input/blurred) image in frequency domain
/// - $ P_{\omega} $ is the point spread function in frequency domain
/// - $ \gamma $ is a user defined regularization constant
///
/// The type of output Array from deconvolution will be double if the input array type is double.
/// Otherwise, it will be float in rest of the cases. Should the caller want to save the image to
/// disk or require the values of output to be in a fixed range, that should be done by the caller
/// explicitly.
pub fn inverse_deconv<T>(
    input: &Array<T>,
    kernel: &Array<f32>,
    gamma: f32,
    algo: InverseDeconvAlgo,
) -> Array<T::AbsOutType>
where
    T: DeconvInput,
    T::AbsOutType: HasAfEnum,
{
    unsafe {
        let mut temp: af_array = std::ptr::null_mut();
        let err_val = af_inverse_deconv(
            &mut temp as *mut af_array,
            input.get(),
            kernel.get(),
            gamma,
            algo as c_uint,
        );
        HANDLE_ERROR(AfError::from(err_val));
        temp.into()
    }
}