1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/// Macro to print the current stats of ArrayFire's memory manager.
///
/// `mem_info!` print 4 values:
///
///  Name                    | Description
/// -------------------------|-------------------------
///  Allocated Bytes         | Total number of bytes allocated by the memory manager
///  Allocated Buffers       | Total number of buffers allocated
///  Locked (In Use) Bytes   | Number of bytes that are in use by active arrays
///  Locked (In Use) Buffers | Number of buffers that are in use by active arrays
///
///  The `Allocated Bytes` is always a multiple of the memory step size. The
///  default step size is 1024 bytes. This means when a buffer is to be
///  allocated, the size is always rounded up to a multiple of the step size.
///  You can use [get_mem_step_size](./fn.get_mem_step_size.html) to check the
///  current step size and [set_mem_step_size](./fn.set_mem_step_size.html) to
///  set a custom resolution size.
///
///  The `Allocated Buffers` is the number of buffers that use up the allocated
///  bytes. This includes buffers currently in scope, as well as buffers marked
///  as free, ie, from arrays gone out of scope. The free buffers are available
///  for use by new arrays that might be created.
///
///  The `Locked Bytes` is the number of bytes in use that cannot be
///  reallocated at the moment. The difference of Allocated Bytes and Locked
///  Bytes is the total bytes available for reallocation.
///
///  The `Locked Buffers` is the number of buffer in use that cannot be
///  reallocated at the moment. The difference of Allocated Buffers and Locked
///  Buffers is the number of buffers available for reallocation.
///
/// # Parameters
///
/// - `msg` is the message that is printed to screen before printing stats
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Dim4, device_mem_info, print, randu, mem_info};
///
/// let dims = Dim4::new(&[5, 5, 1, 1]);
/// let a = randu::<f32>(dims);
/// print(&a);
/// mem_info!("Hello!");
/// ```
///
/// Sample Output:
///
/// ```text
/// AF Memory: Here
/// Allocated [ Bytes | Buffers ] = [ 4096 | 4 ]
/// In Use    [ Bytes | Buffers ] = [ 2048 | 2 ]
/// ```
#[macro_export]
macro_rules! mem_info {
    [$msg: expr] => {
        {
            let (abytes, abuffs, lbytes, lbuffs) = $crate::device_mem_info();
            println!("AF Memory: {:?}", $msg);
            println!("Allocated [Bytes | Buffers] = [ {} | {} ]", abytes, abuffs);
            println!("In Use    [Bytes | Buffers] = [ {} | {} ]", lbytes, lbuffs);
        }
    };
}

/// Join multiple Arrays along a given dimension
///
/// All the Arrays provided to this macro should be of type `&Array`
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Dim4, join_many, print, randu};
///
/// let a = &randu::<f32>(Dim4::new(&[5, 3, 1, 1]));
/// let b = &randu::<f32>(Dim4::new(&[5, 3, 1, 1]));
/// let c = &randu::<f32>(Dim4::new(&[5, 3, 1, 1]));
/// let d = join_many![2; a, b, c];
/// print(&d);
/// ```
///
/// # Panics
///
/// This macro just calls [join_many](./fn.join_many.html) function after collecting all
/// the input arrays into a vector.
// Using macro to implement join many wrapper
#[macro_export]
macro_rules! join_many {
    [$dim: expr; $($x:expr),+] => {
        {
            let mut temp_vec = Vec::new();
            $(
                temp_vec.push($x);
             )*
            $crate::join_many($dim, temp_vec)
        }
    };
}

/// Print given message before printing out the Array to standard output
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Dim4, print_gen, randu, af_print};
/// let dims = Dim4::new(&[3, 1, 1, 1]);
/// let a = randu::<f32>(dims);
/// af_print!("Create a 5-by-3 matrix of random floats on the GPU", a);
/// ```
///
#[macro_export]
macro_rules! af_print {
    [$msg: expr, $x: expr] => {
        {
            $crate::print_gen(String::from($msg), &$x, Some(4));
        }
    };
}

/// Create a dim4 object from provided dimensions
///
/// The user can pass 1 or more sizes and the left over values will default to 1.
#[macro_export]
macro_rules! dim4 {
    ($dim0:expr) => {
        $crate::Dim4::new(&[$dim0, 1, 1, 1])
    };
    ($dim0:expr, $dim1:expr) => {
        $crate::Dim4::new(&[$dim0, $dim1, 1, 1])
    };
    ($dim0:expr, $dim1:expr, $dim2:expr) => {
        $crate::Dim4::new(&[$dim0, $dim1, $dim2, 1])
    };
    ($dim0:expr, $dim1:expr, $dim2:expr, $dim3:expr) => {
        $crate::Dim4::new(&[$dim0, $dim1, $dim2, $dim3])
    };
}

/// Create a sequence object
///
/// If type is not provided, then the Seq will default to i32 type
#[macro_export]
macro_rules! seq {
    () => {
        $crate::Seq::<i32>::default()
    };
    ($sty:ty; $start:literal : $end:literal : $step:literal) => {
        $crate::Seq::<$sty>::new($start, $end, $step)
    };
    ($start:literal : $end:literal : $step:literal) => {
        $crate::Seq::<i32>::new($start, $end, $step)
    };
    ($sty:ty; $start:expr , $end:expr , $step:expr) => {
        $crate::Seq::<$sty>::new($start, $end, $step)
    };
    ($start:expr , $end:expr , $step:expr) => {
        $crate::Seq::<i32>::new($start, $end, $step)
    };
}

/// Indexing into an existing Array
///
/// This macro call with return an Array that has a view of another Array. The Array returned due to
/// the indexing operation will follow copy-on-write semantics. The Array identifier taken by this
/// macro is passed to the relevant internal functions as a borrowed reference. Thus, this identifier
/// will be still available for futher use after the macro call.
///
/// The following types of inputs are matched by this macro.
///
/// - A simple Array identifier.
/// - An Array with slicing info for indexing.
/// - An Array with slicing info and other arrays used for indexing.
///
/// Examples on how to use this macro are provided in the [tutorials book][1]
///
/// [1]: http://arrayfire.org/arrayfire-rust/book/indexing.html
#[macro_export]
macro_rules! view {
    (@af_max_dims) => {
        4
    };
    ( $array_ident:ident ) => {
        $array_ident.clone()
    };
    ( $array_ident:ident [ $($start:literal : $end:literal : $step:literal),+ ] ) => {
        {
            #[allow(non_snake_case)]
            let AF_MAX_DIMS: usize = view!(@af_max_dims);
            let mut seq_vec = Vec::<$crate::Seq<i32>>::with_capacity(AF_MAX_DIMS);
            $(
                seq_vec.push($crate::seq!($start:$end:$step));
             )*
            $crate::index(&$array_ident, &seq_vec)
        }
    };
    (@set_indexer $idim:expr, $idxr:ident, $lterm:expr) => {
        {
            $idxr.set_index(&$lterm, $idim, None);
        }
    };
    (@set_indexer $idim:expr, $idxr:ident, $hterm:expr, $($tterm:expr),*) => {
        {
            $idxr.set_index(&$hterm, $idim, None);
            view!(@set_indexer $idim + 1, $idxr, $($tterm),*);
        }
    };
    ($array_ident:ident [ $($_e:expr),+ ]) => {
        {
            let mut idxrs = $crate::Indexer::default();
            view!(@set_indexer 0, idxrs, $($_e),*);
            $crate::index_gen(&$array_ident, idxrs)
        }
    };
}

/// Macro to evaluate individual Arrays or assignment operations
///
/// - Evaluate on one or more Array identifiers: essentially calls [Array::eval][4] on each of those
///   Array objects individually.
///
///   ```rust
///   use arrayfire::{dim4, eval, randu};
///   let dims = dim4!(5, 5);
///   let a = randu::<f32>(dims);
///   let b = a.clone();
///   let c = a.clone();
///   let d = a.clone();
///   let x = a - b;
///   let y = c * d;
///   eval!(&x, &y);
///   ```
///
/// - Evaluate assignment operations: This is essentially syntactic sugar for modifying portions of
///   Array with another Array using a combination of [Sequences][1] and/or [Array][2] objects.
///   Full examples for this use case are provided in the [tutorials book][3]
///
/// [1]: http://arrayfire.org/arrayfire-rust/arrayfire/struct.Seq.html
/// [2]: http://arrayfire.org/arrayfire-rust/arrayfire/struct.Array.html
/// [3]: http://arrayfire.org/arrayfire-rust/book/indexing.html
/// [4]: http://arrayfire.org/arrayfire-rust/arrayfire/struct.Array.html#method.eval
#[macro_export]
macro_rules! eval {
    ( $l:ident [ $($lb:literal : $le:literal : $ls:literal),+ ] =
      $r:ident [ $($rb:literal : $re:literal : $rs:literal),+ ]) => {
        {
            #[allow(non_snake_case)]
            let AF_MAX_DIMS: usize = view!(@af_max_dims);
            let mut seq_vec = Vec::<$crate::Seq<i32>>::with_capacity(AF_MAX_DIMS);
            $(
                seq_vec.push($crate::seq!($lb:$le:$ls));
             )*
            let mut idxrs = $crate::Indexer::default();
            for i in 0..seq_vec.len() {
                idxrs.set_index(&seq_vec[i], i as u32, None);
            }
            let eq_rterm = $crate::view!($r[ $($rb:$re:$rs),+ ]);
            $crate::assign_gen(&mut $l, &idxrs, &eq_rterm);
        }
    };
    ( $l:ident [ $($lb:literal : $le:literal : $ls:literal),+ ] = $r:expr ) => {
        {
            #[allow(non_snake_case)]
            let AF_MAX_DIMS: usize = view!(@af_max_dims);
            let mut seq_vec = Vec::<$crate::Seq<i32>>::with_capacity(AF_MAX_DIMS);
            $(
                seq_vec.push($crate::seq!($lb:$le:$ls));
             )*
            let mut idxrs = $crate::Indexer::default();
            for i in 0..seq_vec.len() {
                idxrs.set_index(&seq_vec[i], i as u32, None);
            }
            $crate::assign_gen(&mut $l, &idxrs, &$r);
        }
    };
    ($lhs:ident [ $($lhs_e:expr),+ ] = $rhs:ident [ $($rhs_e:expr),+ ]) => {
        {
            let eq_rterm = $crate::view!($rhs[ $($rhs_e),+ ]);
            let mut idxrs = $crate::Indexer::default();
            view!(@set_indexer 0, idxrs, $($lhs_e),*);
            $crate::assign_gen(&mut $lhs, &idxrs, &eq_rterm);
        }
    };
    ($lhs:ident [ $($lhs_e:expr),+ ] = $rhs:expr) => {
        {
            let mut idxrs = $crate::Indexer::default();
            view!(@set_indexer 0, idxrs, $($lhs_e),*);
            $crate::assign_gen(&mut $lhs, &idxrs, &$rhs);
        }
    };
    [$($x:expr),+] => {
        {
            let mut temp_vec = Vec::new();
            $(
                temp_vec.push($x);
             )*
            $crate::eval_multiple(temp_vec)
        }
    };
}

/// Create an array of given shape filled with a single value a.k.a constant array
///
/// # Examples
///
/// ```rust
/// # use arrayfire::{constant};
/// let _zeros_1d = constant!(0.0f32; 10);
/// let _ones_3d = constant!(1u32; 3, 3, 3);
///
/// let dim = 10;
/// let mix_shape = constant!(42.0f32; dim, 10);
/// ```
#[macro_export]
macro_rules! constant {
    ($value:expr; $($dim:expr),+) => {
        $crate::constant($value, $crate::dim4!($($dim),*))
    };
}

/// Create an array of given shape sampled from uniform distribution
///
/// If no type argument is specified, the data type defaults to 32 bit floats.
///
/// # Examples
///
/// ```rust
/// # use arrayfire::{randu};
/// let mat10x10 = randu!(10, 10);
/// ```
#[macro_export]
macro_rules! randu {
    ($($dim:expr),+) => { $crate::randu::<f32>($crate::dim4!($($dim),*)) };
    ($type:ty; $($dim:expr),+) => { $crate::randu::<$type>($crate::dim4!($($dim),*)) };
}

/// Create an array of given shape sampled from normal distribution
///
/// If no type argument is specified, the data type defaults to 32 bit floats.
///
/// # Examples
///
/// ```rust
/// # use arrayfire::{randn};
/// let mat10x10 = randn!(10, 10);
/// ```
#[macro_export]
macro_rules! randn {
    ($($dim:expr),+) => { $crate::randn::<f32>($crate::dim4!($($dim),*)) };
    ($type:ty; $($dim:expr),+) => { $crate::randn::<$type>($crate::dim4!($($dim),*)) };
}

#[cfg(test)]
mod tests {
    use super::super::array::Array;
    use super::super::data::constant;
    use super::super::device::set_device;
    use super::super::index::index;
    use super::super::random::randu;

    #[test]
    fn dim4_construction() {
        let dim1d = dim4!(2);
        let dim2d = dim4!(2, 3);
        let dim3d = dim4!(2, 3, 4);
        let dim4d = dim4!(2, 3, 4, 2);
        let _dimn = dim4!(dim1d[0], dim2d[1], dim3d[2], dim4d[3]);
    }

    #[test]
    fn seq_construction() {
        let default_seq = seq!();
        let _range_1_to_10_step_1 = seq!(0:9:1);
        let _range_1_to_10_step_1_2 = seq!(f32; 0.0:9.0:1.5);
        let _range_from_exprs = seq!(default_seq.begin(), default_seq.end(), default_seq.step());
        let _range_from_exprs2 = seq!(f32; default_seq.begin() as f32,
                 default_seq.end() as f32, default_seq.step() as f32);
    }

    #[test]
    fn seq_view() {
        set_device(0);
        let mut dim4d = dim4!(5, 3, 2, 1);
        dim4d[2] = 1;

        let a = randu::<f32>(dim4d);
        let seqs = &[seq!(1:3:1), seq!()];
        let _sub = index(&a, seqs);
    }

    #[test]
    fn seq_view2() {
        set_device(0);
        // ANCHOR: seq_view2
        let a = randu::<f32>(dim4!(5, 5));
        let _sub = view!(a[1:3:1, 1:1:0]); // 1:1:0 means all elements along axis

        // ANCHOR_END: seq_view2
    }

    #[test]
    fn view_macro() {
        set_device(0);
        let dims = dim4!(5, 5, 2, 1);
        let a = randu::<f32>(dims);
        let b = a.clone();
        let c = a.clone();
        let d = a.clone();
        let e = a.clone();

        let _v = view!(a);

        let _m = view!(c[1:3:1, 1:3:2]);

        let x = seq!(1:3:1);
        let y = seq!(1:3:2);
        let _u = view!(b[x, y]);

        let values: [u32; 3] = [1, 2, 3];
        let indices = Array::new(&values, dim4!(3, 1, 1, 1));
        let indices2 = Array::new(&values, dim4!(3, 1, 1, 1));

        let _w = view!(d[indices, indices2]);

        let _z = view!(e[indices, y]);
    }

    #[test]
    fn eval_assign_seq_indexed_array() {
        set_device(0);
        let dims = dim4!(5, 5);
        let mut a = randu::<f32>(dims);
        //print(&a);
        //[5 5 1 1]
        //    0.6010     0.5497     0.1583     0.3636     0.6755
        //    0.0278     0.2864     0.3712     0.4165     0.6105
        //    0.9806     0.3410     0.3543     0.5814     0.5232
        //    0.2126     0.7509     0.6450     0.8962     0.5567
        //    0.0655     0.4105     0.9675     0.3712     0.7896

        let b = randu::<f32>(dims);
        //print(&b);
        //[5 5 1 1]
        //    0.8966     0.5143     0.0123     0.7917     0.2522
        //    0.0536     0.3670     0.3988     0.1654     0.9644
        //    0.5775     0.3336     0.9787     0.8657     0.4711
        //    0.2908     0.0363     0.2308     0.3766     0.3637
        //    0.9941     0.5349     0.6244     0.7331     0.9643

        let d0 = seq!(1:2:1);
        let d1 = seq!(1:2:1);
        let s0 = seq!(1:2:1);
        let s1 = seq!(1:2:1);
        eval!(a[d0, d1] = b[s0, s1]);
        //print(&a);
        //[5 5 1 1]
        //    0.6010     0.5497     0.1583     0.3636     0.6755
        //    0.0278     0.3670     0.3988     0.4165     0.6105
        //    0.9806     0.3336     0.9787     0.5814     0.5232
        //    0.2126     0.7509     0.6450     0.8962     0.5567
        //    0.0655     0.4105     0.9675     0.3712     0.7896
    }

    #[test]
    fn eval_assign_array_to_seqd_array() {
        set_device(0);
        // ANCHOR: macro_seq_assign
        let mut a = randu::<f32>(dim4!(5, 5));
        let b = randu::<f32>(dim4!(2, 2));
        eval!(a[1:2:1, 1:2:1] = b);
        // ANCHOR_END: macro_seq_assign
    }

    #[test]
    fn macro_seq_array_assign() {
        set_device(0);
        // ANCHOR: macro_seq_array_assign
        let values: [f32; 3] = [1.0, 2.0, 3.0];
        let indices = Array::new(&values, dim4!(3));
        let seq4gen = seq!(0:2:1);
        let mut a = randu::<f32>(dim4!(5, 3));

        let b = constant(2.0 as f32, dim4!(3, 3));

        eval!(a[indices, seq4gen] = b);
        // ANCHOR_END: macro_seq_array_assign
    }

    #[test]
    fn constant_macro() {
        set_device(0);
        let _zeros_1d = constant!(0.0f32; 10);
        let _zeros_2d = constant!(0.0f64; 5, 5);
        let _ones_3d = constant!(1u32; 3, 3, 3);
        let _twos_4d = constant!(2u16; 2, 2, 2, 2);

        let dim = 10;
        let _mix_shape = constant!(42.0f32; dim, 10);
    }

    #[test]
    fn rand_macro() {
        set_device(0);
        let _ru5x5 = randu!(5, 5);
        let _rn5x5 = randn!(5, 5);
        let _ruu32_5x5 = randu!(u32; 5, 5);
        let _ruu8_5x5 = randu!(u8; 5, 5);
    }
}