arrayfire.vision module¶
Computer vision functions (FAST, ORB, etc)
- 
arrayfire.vision.dog(image, radius1, radius2)[source]¶
- Difference of gaussians. - Parameters
- imageaf.Array
- A 2D array specifying an image. 
- radius1scalar.
- The radius of first gaussian kernel. 
- radius2scalar.
- The radius of second gaussian kernel. 
 
- Returns
- outaf.Array
- A multi dimensional array containing the difference of gaussians. 
 
 
- 
arrayfire.vision.fast(image, threshold=20.0, arc_length=9, non_max=True, feature_ratio=0.05, edge=3)[source]¶
- FAST feature detector. - Parameters
- imageaf.Array
- A 2D array representing an image. 
- thresholdscalar. optional. default: 20.0.
- FAST threshold for which a pixel of the circle around a central pixel is consdered. 
- arc_lengthscalar. optional. default: 9
- The minimum length of arc length to be considered. Max length should be 16. 
- non_maxBoolean. optional. default: True
- A boolean flag specifying if non max suppression has to be performed. 
- feature_ratioscalar. optional. default: 0.05 (5%)
- Specifies the maximum ratio of features to pixels in the image. 
- edgescalar. optional. default: 3.
- Specifies the number of edge rows and columns to be ignored. 
 
- Returns
- featuresaf.Features()
- Contains the location and score. Orientation and size are not computed. 
 
 
- 
arrayfire.vision.gloh(image, num_layers=3, contrast_threshold=0.04, edge_threshold=10.0, initial_sigma=1.6, double_input=True, intensity_scale=0.00390625, feature_ratio=0.05)[source]¶
- GLOH feature detector and descriptor. - Parameters
- imageaf.Array
- A 2D array representing an image 
- num_layersoptional: integer. Default: 3
- Number of layers per octave. The number of octaves is calculated internally. 
- contrast_thresholdoptional: float. Default: 0.04
- Threshold used to filter out features that have low contrast. 
- edge_thresholdoptional: float. Default: 10.0
- Threshold used to filter out features that are too edge-like. 
- initial_sigmaoptional: float. Default: 1.6
- The sigma value used to filter the input image at the first octave. 
- double_inputoptional: bool. Default: True
- If True, the input image will be scaled to double the size for the first octave. 
- intensity_scaleoptional: float. Default: 1.0/255
- The inverse of the difference between maximum and minimum intensity values. 
- feature_ratiooptional: float. Default: 0.05
- Specifies the maximum number of features to detect as a ratio of image pixels. 
 
- Returns
- (features, descriptor)tuple of (af.Features(), af.Array)
- descriptor is an af.Array of size N x 272 
 
 
 
- 
arrayfire.vision.hamming_matcher(query, database, dim=0, num_nearest=1)[source]¶
- Hamming distance matcher. - Parameters
- queryaf.Array
- A query feature descriptor 
- databaseaf.Array
- A multi dimensional array containing the feature descriptor database. 
- dimscalar. optional. default: 0.
- Specifies the dimension along which feature descriptor lies. 
- num_nearest: scalar. optional. default: 1.
- Specifies the number of nearest neighbors to find. 
 
- Returns
- (location, distance): tuple of af.Array
- location and distances of closest matches. 
 
 
- 
arrayfire.vision.harris(image, max_corners=500, min_response=100000.0, sigma=1.0, block_size=0, k_thr=0.04)[source]¶
- Harris corner detector. - Parameters
- imageaf.Array
- A 2D array specifying an image. 
- max_cornersscalar. optional. default: 500.
- Specifies the maximum number of corners to be calculated. 
- min_responsescalar. optional. default: 1E5
- Specifies the cutoff score for a corner to be considered 
- sigmascalar. optional. default: 1.0
- Specifies the standard deviation of a circular window. 
- Only used when block_size == 0. Must be >= 0.5 and <= 5.0. 
 
- block_sizescalar. optional. default: 0
- Specifies the window size. 
- k_thrscalar. optional. default: 0.04
- Harris constant. must be >= 0.01 
 
- Returns
- featuresaf.Features()
- Contains the location and score. Orientation and size are not computed. 
 
 
- 
arrayfire.vision.homography(x_src, y_src, x_dst, y_dst, htype=<HOMOGRAPHY.RANSAC: 0>, ransac_threshold=3.0, iters=1000, out_type=<Dtype.f32: 0>)[source]¶
- Homography estimation - Parameters
- x_srcaf.Array
- A list of x co-ordinates of the source points. 
- y_srcaf.Array
- A list of y co-ordinates of the source points. 
- x_dstaf.Array
- A list of x co-ordinates of the destination points. 
- y_dstaf.Array
- A list of y co-ordinates of the destination points. 
- htypeoptional: af.HOMOGRAPHY. Default: HOMOGRAPHY.RANSAC
- htype can be one of
- HOMOGRAPHY.RANSAC: RANdom SAmple Consensus will be used to evaluate quality. 
- HOMOGRAPHY.LMEDS : Least MEDian of Squares is used to evaluate quality. 
 
 
- ransac_thresholdoptional: scalar. Default: 3.0
- If htype is HOMOGRAPHY.RANSAC, it specifies the L2-distance threshold for inliers. 
- out_typeoptional. af.Dtype. Default: Dtype.f32.
- Specifies the output data type. 
 
- Returns
- (H, inliers)A tuple of (af.Array, integer)
 
 
- 
arrayfire.vision.match_template(image, template, match_type=<MATCH.SAD: 0>)[source]¶
- Find the closest match of a template in an image. - Parameters
- imageaf.Array
- A multi dimensional array specifying an image or batch of images. 
- templateaf.Array
- A multi dimensional array specifying a template or batch of templates. 
- match_type: optional: af.MATCH. default: af.MATCH.SAD
- Specifies the match function metric. 
 
- Returns
- outaf.Array
- An array containing the score of the match at each pixel. 
 
 
- 
arrayfire.vision.nearest_neighbour(query, database, dim=0, num_nearest=1, match_type=<MATCH.SSD: 3>)[source]¶
- Nearest Neighbour matcher. - Parameters
- queryaf.Array
- A query feature descriptor 
- databaseaf.Array
- A multi dimensional array containing the feature descriptor database. 
- dimscalar. optional. default: 0.
- Specifies the dimension along which feature descriptor lies. 
- num_nearest: scalar. optional. default: 1.
- Specifies the number of nearest neighbors to find. 
- match_type: optional: af.MATCH. default: af.MATCH.SSD
- Specifies the match function metric. 
 
- Returns
- (location, distance): tuple of af.Array
- location and distances of closest matches. 
 
 
- 
arrayfire.vision.orb(image, threshold=20.0, max_features=400, scale=1.5, num_levels=4, blur_image=False)[source]¶
- ORB Feature descriptor. - Parameters
- imageaf.Array
- A 2D array representing an image. 
- thresholdscalar. optional. default: 20.0.
- FAST threshold for which a pixel of the circle around a central pixel is consdered. 
- max_featuresscalar. optional. default: 400.
- Specifies the maximum number of features to be considered. 
- scalescalar. optional. default: 1.5.
- Specifies the factor by which images are down scaled at each level. 
- num_levlesscalar. optional. default: 4.
- Specifies the number of levels used in the image pyramid. 
- blur_imageBoolean. optional. default: False.
- Flag specifying if the input has to be blurred before computing descriptors. A gaussian filter with sigma = 2 is applied if True. 
 
- Returns
- (features, descriptor)tuple of (af.Features(), af.Array)
- descriptor is an af.Array of size N x 8 
 
 
 
- 
arrayfire.vision.sift(image, num_layers=3, contrast_threshold=0.04, edge_threshold=10.0, initial_sigma=1.6, double_input=True, intensity_scale=0.00390625, feature_ratio=0.05)[source]¶
- SIFT feature detector and descriptor. - Parameters
- imageaf.Array
- A 2D array representing an image 
- num_layersoptional: integer. Default: 3
- Number of layers per octave. The number of octaves is calculated internally. 
- contrast_thresholdoptional: float. Default: 0.04
- Threshold used to filter out features that have low contrast. 
- edge_thresholdoptional: float. Default: 10.0
- Threshold used to filter out features that are too edge-like. 
- initial_sigmaoptional: float. Default: 1.6
- The sigma value used to filter the input image at the first octave. 
- double_inputoptional: bool. Default: True
- If True, the input image will be scaled to double the size for the first octave. 
- intensity_scaleoptional: float. Default: 1.0/255
- The inverse of the difference between maximum and minimum intensity values. 
- feature_ratiooptional: float. Default: 0.05
- Specifies the maximum number of features to detect as a ratio of image pixels. 
 
- Returns
- (features, descriptor)tuple of (af.Features(), af.Array)
- descriptor is an af.Array of size N x 128 
 
 
 
- 
arrayfire.vision.susan(image, radius=3, diff_thr=32, geom_thr=10, feature_ratio=0.05, edge=3)[source]¶
- SUSAN corner detector. - Parameters
- imageaf.Array
- A 2D array specifying an image. 
- radiusscalar. optional. default: 500.
- Specifies the radius of each pixel neighborhood. 
- diff_thrscalar. optional. default: 1E5
- Specifies the intensity difference threshold. 
- geom_thrscalar. optional. default: 1.0
- Specifies the geometric threshold. 
- feature_ratioscalar. optional. default: 0.05 (5%)
- Specifies the ratio of corners found to number of pixels. 
- edgescalar. optional. default: 3
- Specifies the number of edge rows and columns that are ignored. 
 
- Returns
- featuresaf.Features()
- Contains the location and score. Orientation and size are not computed. 
 
 
