1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
extern crate libc;

use self::libc::{c_char, c_int, c_longlong, c_uint, c_void};
use crate::defines::{AfError, Backend, DType};
use crate::dim4::Dim4;
use crate::error::HANDLE_ERROR;
use crate::util::{AfArray, DimT, HasAfEnum, MutAfArray, MutVoidPtr};
use std::ffi::CString;
use std::marker::PhantomData;

// Some unused functions from array.h in C-API of ArrayFire
// af_copy_array
// af_write_array
// af_get_data_ref_count

#[allow(dead_code)]
extern "C" {
    fn af_create_array(
        out: MutAfArray,
        data: *const c_void,
        ndims: c_uint,
        dims: *const DimT,
        aftype: c_uint,
    ) -> c_int;

    fn af_create_handle(out: MutAfArray, ndims: c_uint, dims: *const DimT, aftype: c_uint)
        -> c_int;

    fn af_get_elements(out: MutAfArray, arr: AfArray) -> c_int;

    fn af_get_type(out: *mut c_uint, arr: AfArray) -> c_int;

    fn af_get_dims(
        dim0: *mut c_longlong,
        dim1: *mut c_longlong,
        dim2: *mut c_longlong,
        dim3: *mut c_longlong,
        arr: AfArray,
    ) -> c_int;

    fn af_get_numdims(result: *mut c_uint, arr: AfArray) -> c_int;

    fn af_is_empty(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_scalar(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_row(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_column(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_vector(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_complex(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_real(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_double(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_single(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_realfloating(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_floating(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_integer(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_bool(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_get_data_ptr(data: *mut c_void, arr: AfArray) -> c_int;

    fn af_eval(arr: AfArray) -> c_int;

    fn af_eval_multiple(num: c_int, arrays: *const AfArray) -> c_int;

    fn af_set_manual_eval_flag(flag: c_int) -> c_int;

    fn af_get_manual_eval_flag(flag: *mut c_int) -> c_int;

    fn af_retain_array(out: MutAfArray, arr: AfArray) -> c_int;

    fn af_copy_array(out: MutAfArray, arr: AfArray) -> c_int;

    fn af_release_array(arr: AfArray) -> c_int;

    fn af_print_array(arr: AfArray) -> c_int;

    fn af_print_array_gen(exp: *const c_char, arr: AfArray, precision: c_int) -> c_int;

    fn af_cast(out: MutAfArray, arr: AfArray, aftype: c_uint) -> c_int;

    fn af_get_backend_id(backend: *mut c_uint, input: AfArray) -> c_int;

    fn af_get_device_id(device: *mut c_int, input: AfArray) -> c_int;

    fn af_create_strided_array(
        arr: MutAfArray,
        data: *const c_void,
        offset: DimT,
        ndims: c_uint,
        dims: *const DimT,
        strides: *const DimT,
        aftype: c_uint,
        stype: c_uint,
    ) -> c_int;

    fn af_get_strides(
        s0: *mut DimT,
        s1: *mut DimT,
        s2: *mut DimT,
        s3: *mut DimT,
        arr: AfArray,
    ) -> c_int;

    fn af_get_offset(offset: *mut DimT, arr: AfArray) -> c_int;

    fn af_is_linear(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_owner(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_is_sparse(result: *mut c_int, arr: AfArray) -> c_int;

    fn af_lock_array(arr: AfArray) -> c_int;

    fn af_unlock_array(arr: AfArray) -> c_int;

    fn af_get_device_ptr(ptr: MutVoidPtr, arr: AfArray) -> c_int;

    fn af_get_allocated_bytes(result: *mut usize, arr: AfArray) -> c_int;
}

/// A multidimensional data container
///
/// Currently, Array objects can store only data until four dimensions
///
/// ### NOTE
///
/// All operators(traits) from std::ops module implemented for Array object
/// carry out element wise operations. For example, `*` does multiplication of
/// elements at corresponding locations in two different Arrays.
pub struct Array<T: HasAfEnum> {
    handle: i64,
    /// The phantom marker denotes the
    /// allocation of data on compute device
    _marker: PhantomData<T>,
}

macro_rules! is_func {
    ($doc_str: expr, $fn_name: ident, $ffi_fn: ident) => (
        #[doc=$doc_str]
        pub fn $fn_name(&self) -> bool {
            unsafe {
                let mut ret_val: i32 = 0;
                let err_val = $ffi_fn(&mut ret_val as *mut c_int, self.handle as AfArray);
                HANDLE_ERROR(AfError::from(err_val));
                ret_val>0
            }
        }
    )
}

impl<T> Array<T>
where
    T: HasAfEnum,
{
    /// Constructs a new Array object
    ///
    /// # Examples
    ///
    /// An example of creating an Array from f32 array
    ///
    /// ```rust
    /// use arrayfire::{Array, Dim4, print};
    /// let values: [f32; 3] = [1.0, 2.0, 3.0];
    /// let indices = Array::new(&values, Dim4::new(&[3, 1, 1, 1]));
    /// print(&indices);
    /// ```
    /// An example of creating an Array from half::f16 array
    ///
    /// ```rust
    /// use arrayfire::{Array, Dim4, print};
    /// use half::f16;
    ///
    /// let values: [f32; 3] = [1.0, 2.0, 3.0];
    ///
    /// let half_values = values.iter().map(|&x| f16::from_f32(x)).collect::<Vec<_>>();
    ///
    /// let hvals = Array::new(&half_values, Dim4::new(&[3, 1, 1, 1]));
    ///
    /// print(&hvals);
    /// ```
    ///
    #[allow(unused_mut)]
    pub fn new(slice: &[T], dims: Dim4) -> Self {
        let aftype = T::get_af_dtype();
        let mut temp: i64 = 0;
        unsafe {
            let err_val = af_create_array(
                &mut temp as MutAfArray,
                slice.as_ptr() as *const c_void,
                dims.ndims() as c_uint,
                dims.get().as_ptr() as *const c_longlong,
                aftype as c_uint,
            );
            HANDLE_ERROR(AfError::from(err_val));
        }
        temp.into()
    }

    /// Constructs a new Array object from strided data
    ///
    /// The data pointed by the slice passed to this function can possibily be offseted using an additional `offset` parameter.
    #[allow(unused_mut)]
    pub fn new_strided(slice: &[T], offset: i64, dims: Dim4, strides: Dim4) -> Self {
        let aftype = T::get_af_dtype();
        let mut temp: i64 = 0;
        unsafe {
            let err_val = af_create_strided_array(
                &mut temp as MutAfArray,
                slice.as_ptr() as *const c_void,
                offset as DimT,
                dims.ndims() as c_uint,
                dims.get().as_ptr() as *const c_longlong,
                strides.get().as_ptr() as *const c_longlong,
                aftype as c_uint,
                1 as c_uint,
            );
            HANDLE_ERROR(AfError::from(err_val));
        }
        temp.into()
    }

    /// Constructs a new Array object of specified dimensions and type
    ///
    /// # Examples
    ///
    /// ```rust
    /// use arrayfire::{Array, Dim4};
    /// let garbage_vals = Array::<f32>::new_empty(Dim4::new(&[3, 1, 1, 1]));
    /// ```
    #[allow(unused_mut)]
    pub fn new_empty(dims: Dim4) -> Self {
        let aftype = T::get_af_dtype();
        unsafe {
            let mut temp: i64 = 0;
            let err_val = af_create_handle(
                &mut temp as MutAfArray,
                dims.ndims() as c_uint,
                dims.get().as_ptr() as *const c_longlong,
                aftype as c_uint,
            );
            HANDLE_ERROR(AfError::from(err_val));
            temp.into()
        }
    }

    /// Returns the backend of the Array
    ///
    /// # Return Values
    ///
    /// Returns an value of type `Backend` which indicates which backend
    /// was active when Array was created.
    pub fn get_backend(&self) -> Backend {
        unsafe {
            let mut ret_val: u32 = 0;
            let err_val = af_get_backend_id(&mut ret_val as *mut c_uint, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            match (err_val, ret_val) {
                (0, 1) => Backend::CPU,
                (0, 2) => Backend::CUDA,
                (0, 3) => Backend::OPENCL,
                _ => Backend::DEFAULT,
            }
        }
    }

    /// Returns the device identifier(integer) on which the Array was created
    ///
    /// # Return Values
    ///
    /// Return the device id on which Array was created.
    pub fn get_device_id(&self) -> i32 {
        unsafe {
            let mut ret_val: i32 = 0;
            let err_val = af_get_device_id(&mut ret_val as *mut c_int, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            ret_val
        }
    }

    /// Returns the number of elements in the Array
    pub fn elements(&self) -> usize {
        unsafe {
            let mut ret_val: i64 = 0;
            let err_val = af_get_elements(&mut ret_val as MutAfArray, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            ret_val as usize
        }
    }

    /// Returns the Array data type
    pub fn get_type(&self) -> DType {
        unsafe {
            let mut ret_val: u32 = 0;
            let err_val = af_get_type(&mut ret_val as *mut c_uint, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            DType::from(ret_val)
        }
    }

    /// Returns the dimensions of the Array
    pub fn dims(&self) -> Dim4 {
        unsafe {
            let mut ret0: i64 = 0;
            let mut ret1: i64 = 0;
            let mut ret2: i64 = 0;
            let mut ret3: i64 = 0;
            let err_val = af_get_dims(
                &mut ret0 as *mut DimT,
                &mut ret1 as *mut DimT,
                &mut ret2 as *mut DimT,
                &mut ret3 as *mut DimT,
                self.handle as AfArray,
            );
            HANDLE_ERROR(AfError::from(err_val));
            Dim4::new(&[ret0 as u64, ret1 as u64, ret2 as u64, ret3 as u64])
        }
    }

    /// Returns the strides of the Array
    pub fn strides(&self) -> Dim4 {
        unsafe {
            let mut ret0: i64 = 0;
            let mut ret1: i64 = 0;
            let mut ret2: i64 = 0;
            let mut ret3: i64 = 0;
            let err_val = af_get_strides(
                &mut ret0 as *mut DimT,
                &mut ret1 as *mut DimT,
                &mut ret2 as *mut DimT,
                &mut ret3 as *mut DimT,
                self.handle as AfArray,
            );
            HANDLE_ERROR(AfError::from(err_val));
            Dim4::new(&[ret0 as u64, ret1 as u64, ret2 as u64, ret3 as u64])
        }
    }

    /// Returns the number of dimensions of the Array
    pub fn numdims(&self) -> u32 {
        unsafe {
            let mut ret_val: u32 = 0;
            let err_val = af_get_numdims(&mut ret_val as *mut c_uint, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            ret_val
        }
    }

    /// Returns the offset to the pointer from where data begins
    pub fn offset(&self) -> i64 {
        unsafe {
            let mut ret_val: i64 = 0;
            let err_val = af_get_offset(&mut ret_val as *mut DimT, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            ret_val
        }
    }

    /// Returns the native FFI handle for Rust object `Array`
    pub fn get(&self) -> i64 {
        self.handle
    }

    /// Returns the native FFI handle for Rust object `Array`
    pub fn set(&mut self, handle: i64) {
        self.handle = handle;
    }

    /// Copies the data from the Array to the mutable slice `data`
    pub fn host<O: HasAfEnum>(&self, data: &mut [O]) {
        if data.len() != self.elements() {
            HANDLE_ERROR(AfError::ERR_SIZE);
        }
        unsafe {
            let err_val = af_get_data_ptr(data.as_mut_ptr() as *mut c_void, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
        }
    }

    /// Evaluates any pending lazy expressions that represent the data in the Array object
    pub fn eval(&self) {
        unsafe {
            let err_val = af_eval(self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
        }
    }

    /// Makes an copy of the Array
    ///
    /// This does a deep copy of the data into a new Array
    pub fn copy(&self) -> Self {
        unsafe {
            let mut temp: i64 = 0;
            let err_val = af_copy_array(&mut temp as MutAfArray, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            temp.into()
        }
    }

    is_func!("Check if Array is empty", is_empty, af_is_empty);
    is_func!("Check if Array is scalar", is_scalar, af_is_scalar);
    is_func!("Check if Array is a row", is_row, af_is_row);
    is_func!("Check if Array is a column", is_column, af_is_column);
    is_func!("Check if Array is a vector", is_vector, af_is_vector);
    is_func!(
        "Check if Array is of complex type",
        is_complex,
        af_is_complex
    );
    is_func!(
        "Check if Array's numerical type is of double precision",
        is_double,
        af_is_double
    );
    is_func!(
        "Check if Array's numerical type is of single precision",
        is_single,
        af_is_single
    );
    is_func!("Check if Array is of real type", is_real, af_is_real);
    is_func!(
        "Check if Array is of single precision",
        is_floating,
        af_is_floating
    );
    is_func!(
        "Check if Array is of integral type",
        is_integer,
        af_is_integer
    );
    is_func!("Check if Array is of boolean type", is_bool, af_is_bool);
    is_func!(
        "Check if Array's memory layout is continuous and one dimensional",
        is_linear,
        af_is_linear
    );
    is_func!(
        "Check if Array's memory is owned by it and not a view of another Array",
        is_owner,
        af_is_owner
    );

    /// Cast the Array data type to `target_type`
    pub fn cast<O: HasAfEnum>(&self) -> Array<O> {
        let trgt_type = O::get_af_dtype();
        let mut temp: i64 = 0;
        unsafe {
            let err_val = af_cast(
                &mut temp as MutAfArray,
                self.handle as AfArray,
                trgt_type as c_uint,
            );
            HANDLE_ERROR(AfError::from(err_val));
        }
        temp.into()
    }

    /// Find if the current array is sparse
    pub fn is_sparse(&self) -> bool {
        unsafe {
            let mut temp: i32 = 0;
            let err_val = af_is_sparse(&mut temp as *mut c_int, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            temp > 0
        }
    }

    /// Lock the device buffer in the memory manager
    ///
    /// Locked buffers are not freed by memory manager until unlock is called.
    pub fn lock(&self) {
        unsafe {
            let err_val = af_lock_array(self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
        }
    }

    /// Unlock the device buffer in the memory manager
    ///
    /// This function will give back the control over the device pointer to the
    /// memory manager.
    pub fn unlock(&self) {
        unsafe {
            let err_val = af_unlock_array(self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
        }
    }

    /// Get the device pointer and lock the buffer in memory manager
    ///
    /// The device pointer is not freed by memory manager until unlock is called.
    pub fn device_ptr(&self) -> u64 {
        unsafe {
            let mut temp: u64 = 0;
            let err_val = af_get_device_ptr(&mut temp as MutVoidPtr, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            temp
        }
    }

    /// Get the size of physical allocated bytes.
    ///
    /// This function will return the size of the parent/owner if the current Array object is an
    /// indexed Array.
    pub fn get_allocated_bytes(&self) -> usize {
        unsafe {
            let mut temp: usize = 0;
            let err_val = af_get_allocated_bytes(&mut temp as *mut usize, self.handle as AfArray);
            HANDLE_ERROR(AfError::from(err_val));
            temp
        }
    }
}

/// Used for creating Array object from native
/// resource id, an 64 bit integer
impl<T: HasAfEnum> Into<Array<T>> for i64 {
    fn into(self) -> Array<T> {
        Array {
            handle: self,
            _marker: PhantomData,
        }
    }
}

/// Returns a new Array object after incrementing the reference count of native resource
///
/// Cloning an Array does not do a deep copy of the underlying array data. It increments the
/// reference count of native resource and returns you the new reference in the form a new Array
/// object.
///
/// To create a deep copy use
/// [copy()](http://arrayfire.org/arrayfire-rust/arrayfire/struct.Array.html#method.copy)
impl<T> Clone for Array<T>
where
    T: HasAfEnum,
{
    fn clone(&self) -> Self {
        unsafe {
            let mut temp: i64 = 0;
            let ret_val = af_retain_array(&mut temp as MutAfArray, self.handle as AfArray);
            match ret_val {
                0 => temp.into(),
                _ => panic!("Weak copy of Array failed with error code: {}", ret_val),
            }
        }
    }
}

/// To free resources when Array goes out of scope
impl<T> Drop for Array<T>
where
    T: HasAfEnum,
{
    fn drop(&mut self) {
        unsafe {
            let ret_val = af_release_array(self.handle);
            match ret_val {
                0 => (),
                _ => panic!("Array<T> drop failed with error code: {}", ret_val),
            }
        }
    }
}

/// Print data in the Array
///
/// # Parameters
///
/// - `input` is the Array to be printed
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Dim4, print, randu};
/// println!("Create a 5-by-3 matrix of random floats on the GPU");
/// let dims = Dim4::new(&[5, 3, 1, 1]);
/// let a = randu::<f32>(dims);
/// print(&a);
/// ```
///
/// The sample output will look like below:
///
/// ```text
/// [5 3 1 1]
///     0.7402     0.4464     0.7762
///     0.9210     0.6673     0.2948
///     0.0390     0.1099     0.7140
///     0.9690     0.4702     0.3585
///     0.9251     0.5132     0.6814
/// ```
pub fn print<T: HasAfEnum>(input: &Array<T>) {
    let emptystring = CString::new("").unwrap();
    unsafe {
        let err_val = af_print_array_gen(
            emptystring.to_bytes_with_nul().as_ptr() as *const c_char,
            input.get() as AfArray,
            4,
        );
        HANDLE_ERROR(AfError::from(err_val));
    }
}

/// Generalized Array print function
///
/// Use this function to print Array data with arbitrary preicsion
///
/// # Parameters
///
/// - `msg` is message to be printed before printing the Array data
/// - `input` is the Array to be printed
/// - `precision` is data precision with which Array has to be printed
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Dim4, print_gen, randu};
/// println!("Create a 5-by-3 matrix of random floats on the GPU");
/// let dims = Dim4::new(&[5, 3, 1, 1]);
/// let a = randu::<f32>(dims);
/// print_gen(String::from("Random Array"), &a, Some(6));
/// ```
///
/// The sample output will look like below:
///
/// ```text
/// Random Array
///
/// [5 3 1 1]
///     0.740276     0.446440     0.776202
///     0.921094     0.667321     0.294810
///     0.039014     0.109939     0.714090
///     0.969058     0.470269     0.358590
///     0.925181     0.513225     0.681451
/// ```
pub fn print_gen<T: HasAfEnum>(msg: String, input: &Array<T>, precision: Option<i32>) {
    let emptystring = CString::new(msg.as_bytes()).unwrap();
    unsafe {
        let err_val = af_print_array_gen(
            emptystring.to_bytes_with_nul().as_ptr() as *const c_char,
            input.get() as AfArray,
            match precision {
                Some(p) => p,
                None => 4,
            } as c_int,
        );
        HANDLE_ERROR(AfError::from(err_val));
    }
}

/// evaluate multiple arrays
///
/// Use this function to evaluate multiple arrays in single call
///
/// # Parameters
///
/// - `inputs` are the list of arrays to be evaluated
pub fn eval_multiple<T: HasAfEnum>(inputs: Vec<&Array<T>>) {
    unsafe {
        let mut v = Vec::new();
        for i in inputs {
            v.push(i.get());
        }

        let err_val = af_eval_multiple(v.len() as c_int, v.as_ptr() as *const AfArray);
        HANDLE_ERROR(AfError::from(err_val));
    }
}

/// Set eval flag value
///
/// This function can be used to toggle on/off the manual evaluation of arrays.
///
/// # Parameters
///
/// - `flag` is a boolean value indicating manual evaluation setting
pub fn set_manual_eval(flag: bool) {
    unsafe {
        let err_val = af_set_manual_eval_flag(flag as c_int);
        HANDLE_ERROR(AfError::from(err_val));
    }
}

/// Get eval flag value
///
/// This function can be used to find out if manual evaluation of arrays is
/// turned on or off.
///
/// # Return Values
///
/// A boolean indicating manual evaluation setting.
pub fn is_eval_manual() -> bool {
    unsafe {
        let mut ret_val: i32 = 0;
        let err_val = af_get_manual_eval_flag(&mut ret_val as *mut c_int);
        HANDLE_ERROR(AfError::from(err_val));
        ret_val > 0
    }
}